Fabrication of l-proline enriched alginate dialdehyde-gelatin hydrogel thin films for efficient wound healing applications.

IF 2.3 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Journal of Biomaterials Applications Pub Date : 2024-11-01 Epub Date: 2024-08-24 DOI:10.1177/08853282241276716
Fathima Rumaisa, Akash Chandran, Mini Saraswathy
{"title":"Fabrication of l-proline enriched alginate dialdehyde-gelatin hydrogel thin films for efficient wound healing applications.","authors":"Fathima Rumaisa, Akash Chandran, Mini Saraswathy","doi":"10.1177/08853282241276716","DOIUrl":null,"url":null,"abstract":"<p><p>Hydrogel-based wound management systems represent a promising avenue in tissue engineering for restoring and preserving the normal functionality of damaged tissues. Incorporating active components into hydrogel matrices enhances their suitability for biomedical applications. In this study, we investigated the integration of l-proline, a nonessential imino acid with largely unexplored roles in living systems, into alginate dialdehyde-gelatin hydrogel for wound healing purposes. Physicochemical properties of the resulting hydrogel film, termed ADAGLP, were meticulously evaluated, including wound healing efficacy in vitro and anti-biofilm activity against Gram-positive and Gram-negative microorganisms. Fourier-transform infrared spectroscopy (FTIR) analysis provided insights into the interaction between l-proline and ADAG. Films incorporating 0.5% l-proline were selected for comprehensive investigation. Comparative analysis revealed prolonged gelation time and increased water holding capacity of ADAGLP compared to ADAG films. Moreover, ADAGLP exhibited a significantly higher degradation rate (69.5 ± 3.2%) compared to ADAG (35.2 ± 1.6%). Remarkably, ADAGLP demonstrated cyto-compatibility, non-toxicity, and facilitated migration to the scratch area in vitro conditions. Notably, it exhibited potent anti-biofilm properties. Our findings suggest that ADAGLP hydrogel holds promise as a biomaterial for wound care, offering prolonged drug delivery and maintaining optimal moisture levels in wound areas. The incorporation of l-proline in the wound microenvironment may contribute to enhanced tissue remodeling, by inhibiting biofilm formation, further highlighting the potential of this hydrogel system in wound healing applications.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"473-483"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/08853282241276716","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/24 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrogel-based wound management systems represent a promising avenue in tissue engineering for restoring and preserving the normal functionality of damaged tissues. Incorporating active components into hydrogel matrices enhances their suitability for biomedical applications. In this study, we investigated the integration of l-proline, a nonessential imino acid with largely unexplored roles in living systems, into alginate dialdehyde-gelatin hydrogel for wound healing purposes. Physicochemical properties of the resulting hydrogel film, termed ADAGLP, were meticulously evaluated, including wound healing efficacy in vitro and anti-biofilm activity against Gram-positive and Gram-negative microorganisms. Fourier-transform infrared spectroscopy (FTIR) analysis provided insights into the interaction between l-proline and ADAG. Films incorporating 0.5% l-proline were selected for comprehensive investigation. Comparative analysis revealed prolonged gelation time and increased water holding capacity of ADAGLP compared to ADAG films. Moreover, ADAGLP exhibited a significantly higher degradation rate (69.5 ± 3.2%) compared to ADAG (35.2 ± 1.6%). Remarkably, ADAGLP demonstrated cyto-compatibility, non-toxicity, and facilitated migration to the scratch area in vitro conditions. Notably, it exhibited potent anti-biofilm properties. Our findings suggest that ADAGLP hydrogel holds promise as a biomaterial for wound care, offering prolonged drug delivery and maintaining optimal moisture levels in wound areas. The incorporation of l-proline in the wound microenvironment may contribute to enhanced tissue remodeling, by inhibiting biofilm formation, further highlighting the potential of this hydrogel system in wound healing applications.

制作富含 l-脯氨酸的海藻酸二醛-明胶水凝胶薄膜,用于高效伤口愈合。
基于水凝胶的伤口管理系统是组织工程学中恢复和保持受损组织正常功能的一个前景广阔的途径。在水凝胶基质中加入活性成分可提高其在生物医学应用中的适用性。在本研究中,我们研究了将 l-脯氨酸(一种在生命系统中发挥重要作用的非必需亚胺酸)融入海藻酸二醛-明胶水凝胶以达到伤口愈合的目的。我们对制成的水凝胶薄膜(称为 ADAGLP)的理化特性进行了细致的评估,包括体外伤口愈合效果和对革兰氏阳性和革兰氏阴性微生物的抗生物膜活性。傅立叶变换红外光谱(FTIR)分析深入揭示了 l-脯氨酸与 ADAG 之间的相互作用。我们选择了含 0.5% l-脯氨酸的薄膜进行全面研究。对比分析表明,与 ADAG 薄膜相比,ADAGLP 的凝胶时间更长,持水量更大。此外,与 ADAG(35.2 ± 1.6%)相比,ADAGLP 的降解率(69.5 ± 3.2%)明显更高。值得注意的是,ADAGLP 具有细胞相容性、无毒性,并能在体外条件下促进向划痕区域迁移。值得注意的是,它还表现出强大的抗生物膜特性。我们的研究结果表明,ADAGLP 水凝胶有望成为一种用于伤口护理的生物材料,它能延长药物输送时间并保持伤口区域的最佳湿度。在伤口微环境中加入 l-脯氨酸可抑制生物膜的形成,从而促进组织重塑,进一步凸显了这种水凝胶系统在伤口愈合方面的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biomaterials Applications
Journal of Biomaterials Applications 工程技术-材料科学:生物材料
CiteScore
5.10
自引率
3.40%
发文量
144
审稿时长
1.5 months
期刊介绍: The Journal of Biomaterials Applications is a fully peer reviewed international journal that publishes original research and review articles that emphasize the development, manufacture and clinical applications of biomaterials. Peer-reviewed articles by biomedical specialists from around the world cover: New developments in biomaterials, R&D, properties and performance, evaluation and applications Applications in biomedical materials and devices - from sutures and wound dressings to biosensors and cardiovascular devices Current findings in biological compatibility/incompatibility of biomaterials The Journal of Biomaterials Applications publishes original articles that emphasize the development, manufacture and clinical applications of biomaterials. Biomaterials continue to be one of the most rapidly growing areas of research in plastics today and certainly one of the biggest technical challenges, since biomaterial performance is dependent on polymer compatibility with the aggressive biological environment. The Journal cuts across disciplines and focuses on medical research and topics that present the broadest view of practical applications of biomaterials in actual clinical use. The Journal of Biomaterial Applications is devoted to new and emerging biomaterials technologies, particularly focusing on the many applications which are under development at industrial biomedical and polymer research facilities, as well as the ongoing activities in academic, medical and applied clinical uses of devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信