{"title":"A novel nano-drug delivery system of glycyrrhetinic acid-mediated intracellular breakable brucine for enhanced anti-hepatitis B efficacy.","authors":"Qingxia Guan, Yumeng Liu, Zhaorui Xia, Yue Zhang, Liping Wang, Yanhong Wang, Shujun Zou, Shaowa Lv, Xiaoying Zhou","doi":"10.1177/08853282241254750","DOIUrl":"10.1177/08853282241254750","url":null,"abstract":"<p><p><b>Background:</b> Glycyrrhetinic acid-mediated brucine self-assembled nanomicelles enhance the anti-hepatitis B properties of brucine by improving its water solubility, short half-life, toxicity, and side effects. Brucine (B) is an indole alkaloid extracted from the seeds of <i>Strychnos nux-vomica</i> (Loganiaceae). <b>Purpose:</b> To assess the efficacy of the Brucine-Glycyrrhetnic acid-Polyethylene glycol-3,3'-dithiodipropionic acid-Glycerin monostearate (B-GPSG) in treating hepatitis B, its potential to protect against acute liver injury caused by d-galactosamine and its anti-hepatoma activities were studied. <b>Research Design:</b> The concentration of B-GPSG used in the in vivo and in vitro experiments was 0.63 mg/mL. The rats injected with d-GalN (450 mg/kg) were used as liver injury models. The rats were separated into normal, model, positive, positive control, B-PSG and B-GPSG groups. Hepatoma cells expressing HBV HepG2.2.15 were used for in vitro experiments. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, plate cloning, Hoechst staining and flow cytometry were conducted to explore the mechanism of B-GPSG against hepatitis B. <b>Results:</b> Compared with the model group, the liver coefficient of B-GPSG group decreased (4.59 ± 0.17 vs 5.88 ± 0.42), the content of MDA in rat liver homogenate decreased (12.54 ± 1.81 vs 23.05 ± 2.98), the activity of SOD increased, the activity of ALT and AST in rat serum decreased. In vitro, the IC<sub>50</sub> values of B-GPSG group decreased. B-GPSG group effectively inhibited the proliferation and migration of HepG2.2.15 cells. <b>Conclusions:</b> The hepatoprotective effects of B-GPSG nanomicelles, which are attributed to their GA-mediated liver targeting and synergistic actions with brucine, suggest their therapeutic potential against hepatitis B. This development opens up new possibilities for the application of traditional Chinese medicine and nanomedicine in anti-hepatitis B.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"150-161"},"PeriodicalIF":2.3,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140944589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Juncheng Guo, Yijun Yang, Yang Xiang, Shufang Zhang, Xueyi Guo
{"title":"Application of smart hydrogel materials in cartilage injury repair: A systematic review and meta-analysis.","authors":"Juncheng Guo, Yijun Yang, Yang Xiang, Shufang Zhang, Xueyi Guo","doi":"10.1177/08853282241248779","DOIUrl":"10.1177/08853282241248779","url":null,"abstract":"<p><strong>Objective: </strong>Cartilage injury is a common clinical condition, and treatment approaches have evolved over time from traditional conservative and surgical methods to regenerative repair. In this context, hydrogels, as widely used biomaterials in the field of cartilage repair, have garnered significant attention. Particularly, responsive hydrogels (also known as \"smart hydrogels\") have shown immense potential due to their ability to respond to various physicochemical properties and environmental changes. This paper aims to review the latest research developments of hydrogels in cartilage repair, utilizing a more systematic and comprehensive meta-analysis approach to evaluate the research status and application value of responsive hydrogels. The goal is to determine whether these materials demonstrate favorable therapeutic effects for subsequent clinical applications, thereby offering improved treatment methods for patients with cartilage injuries.</p><p><strong>Method: </strong>This study employed a systematic literature search method to summarize the research progress of responsive hydrogels by retrieving literature on the subject and review studies. The search terms included \"hydrogel\" and \"cartilage,\" covering data from database inception up to October 2023. The quality of the literature was independently evaluated using Review Manager v5.4 software. Quantifiable data was statistically analyzed using the R language.</p><p><strong>Results: </strong>A total of 7 articles were retrieved for further meta-analysis. In the quality assessment, the studies demonstrated reliability and accuracy. The results of the meta-analysis indicated that responsive hydrogels exhibit unique advantages and effective therapeutic outcomes in the field of cartilage repair. Subgroup analysis revealed potential influences of factors such as different types of hydrogels and animal models on treatment effects.</p><p><strong>Conclusion: </strong>Responsive hydrogels show significant therapeutic effects and substantial application potential in the field of cartilage repair. This study provides strong scientific evidence for their further clinical applications and research, with the hope of promoting advancements in the treatment of cartilage injuries.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"96-116"},"PeriodicalIF":2.3,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140858422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yi Sun, Min Shi, Bowen Niu, Xiangyang Xu, Wen Xia, Chao Deng
{"title":"Mg-Sr-Ca containing bioactive glass nanoparticles hydrogel modified mineralized collagen scaffold for bone repair.","authors":"Yi Sun, Min Shi, Bowen Niu, Xiangyang Xu, Wen Xia, Chao Deng","doi":"10.1177/08853282241254741","DOIUrl":"10.1177/08853282241254741","url":null,"abstract":"<p><p>The aim of this study is to explore the therapeutic effects of Mg-Sr-Ca containing bioactive glass nanoparticles sodium alginate hydrogel modified mineralized collagen scaffold (Mg-Sr-Ca-BGNs-SA-MC) on the repair of osteoporotic bone defect. During the study, Mg-Sr-Ca containing bioactive glass nanoparticles (Mg-Sr-Ca-BGNs) were synthesized using the sol-gel method, and the Mg-Sr-Ca-BGNs-SA-MC scaffold was synthesized by a simple method. The Mg-Sr-Ca-BGNs and the Mg-Sr-Ca-BGNs-SA-MC scaffold were observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The elements of Mg, Sr, Ca and Si were effectively integrated into Mg-Sr-Ca-BGNs. SEM analysis revealed the presence of Mg-Sr-Ca-BGNs on the scaffold's surface. Furthermore, the cytotoxicity of the scaffolds were assessed using a live/dead assay. The result of the live/dead assay demonstrated that the scaffold materials were non-toxic to cell growth. More importantly, the in vivo study indicated that implanted scaffold promoted tissue regeneration and integration with newly formed bone. Overall, the Mg-Sr-Ca-BGNs-SA-MC scaffold is suitable for guided bone regeneration and beneficial to repair of osteoporotic bone defects.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"117-128"},"PeriodicalIF":2.3,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141075681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yang Sheng, Danni Qing, Naijun Li, Peng Zhang, Yixin Sun, Rong Zhang
{"title":"Singlet oxygen production of Zn-Ag-In-S quantum dots for photodynamic treatment of cancer cells and bacteria.","authors":"Yang Sheng, Danni Qing, Naijun Li, Peng Zhang, Yixin Sun, Rong Zhang","doi":"10.1177/08853282241255817","DOIUrl":"10.1177/08853282241255817","url":null,"abstract":"<p><p>Zn-Ag-In-S (ZAIS) quantum dots (QDs) were synthesized with various Ag-to-In ratios and used as novel photosensitizers for photodynamic therapy (PDT) on cancer cell inhibition and bacterial sterilization, and their structural, optical, and photodynamic properties were investigated. The alloyed QDs displayed a photoluminescence quantum yield of 72% with a long fluorescence lifetime of 5.3 μs when the Ag-to-In ratio was 1:3, suggesting a good opportunity as a dual functional platform for fluorescence imaging and PDT. The ZAIS QDs were then coated with amphiphilic brush copolymer poly(maleic anhydride-alt-1-octadecene) (PMAO) before application. The <sup>1</sup>O<sub>2</sub> quantum yield of the ZAIS/PMAO was measured to be 8%, which was higher than previously reported CdSe QDs and comparable to some organic photosensitizers. Moreover, the ZAIS QDs showed excellent stability in aqueous and biological media, unlike organic photosensitizers that tend to degrade over time. The in vitro PDT against human melanoma cell line (A2058) and <i>Staphylococcus aureus</i> shows about 30% inhibition rate upon 20 min light irradiation. Cell staining images clearly demonstrated that co-treatment with ZAIS QDs and light irradiation effectively killed A2058 cells, demonstrating the potential of ZAIS QDs as novel and versatile photosensitizers for PDT in cancer and bacterial treatment, and provides useful information for future designing of QD-based photosensitizers.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"129-138"},"PeriodicalIF":2.3,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141087581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cellulose fibres enhance the function of hemostatic composite medical sealants.","authors":"Efrat Gilboa, Inbar Eshkol-Yogev, Shir Giladi, Meital Zilberman","doi":"10.1177/08853282241254845","DOIUrl":"10.1177/08853282241254845","url":null,"abstract":"<p><p>Tissue adhesives and sealants offer promising alternatives to traditional wound closure methods, but the existing trade-off between biocompatibility and strength is still a challenge. The current study explores the potential of a gelatin-alginate-based hydrogel, cross-linked with a carbodiimide, and loaded with two functional fillers, the hemostatic agent kaolin and cellulose fibres, to improve the hydrogel's mechanical strength and hemostatic properties for use as a sealant. The effect of the formulation parameters on the mechanical and physical properties was studied, as well as the biocompatibility and microstructure. The incorporation of the two functional fillers resulted in a dual micro-composite structure, with uniform dispersion of both fillers within the hydrogel, and excellent adhesion between the fillers and the hydrogel matrix. This enabled to strongly increase the sealing ability and the tensile strength and modulus of the hydrogel. The fibres' contribution to the enhanced mechanical properties is more dominant than that of kaolin. A combined synergistic effect of both fillers resulted in enhanced sealing ability (247%), tensile strength (400%), and Young's modulus (437%), compared to the unloaded hydrogel formulation. While the incorporation of kaolin almost did not affect the physical properties of the hydrogel, the incorporation of the fibres strongly increased the viscosity and decreased the gelation time and swelling degree. The cytotoxicity tests indicated that all studied formulations exhibited high cell viability. Hence, the studied new dual micro-composite hydrogels may be suitable for medical sealing applications, especially when it is needed to get a high sealing effect within a short time. The desired hemostatic effect is obtained due to kaolin incorporation without affecting the physical properties of the sealant. Understanding the effects of the formulation parameters on the hydrogel's properties enables the fitting of optimal formulations for various medical sealing applications.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"83-95"},"PeriodicalIF":2.3,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141071024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carolina Silva Cardoso, Filipe Feitosa de Carvalho, Rodrigo César Gomes, Reinaldo José Gianini, Camilla Fanelli, Irene de Lourdes Noronha, Nelson Brancaccio Dos Santos, Daniel Komatsu, Priscila Randazzo-Moura
{"title":"New approaches to second-degree burn healing: Polyvinyl alcohol membrane loaded to arnica combined to laser therapy.","authors":"Carolina Silva Cardoso, Filipe Feitosa de Carvalho, Rodrigo César Gomes, Reinaldo José Gianini, Camilla Fanelli, Irene de Lourdes Noronha, Nelson Brancaccio Dos Santos, Daniel Komatsu, Priscila Randazzo-Moura","doi":"10.1177/08853282241238609","DOIUrl":"10.1177/08853282241238609","url":null,"abstract":"<p><p>Second-degree burns require greater care, as the damage is more extensive and worrisome and the use of a biomaterial can help in the cell repair process, with better planning, low cost, and better accessibility. Arnica has anti-inflammatory and analgesic properties in skin lesions treatments and laser therapy is another therapeutic alternative for burns. Evaluate the effects of arnica incorporated into PVA associated or not with low intensity laser on burns in rats. PVA and PVA with arnica (PVA+A) were obtained and characterized physicochemically. Through in vivo studies, the effects of PVA and PVA+A with or without the application of laser on the lesions allowed histological and immunohistochemical analyzes. PVA+A was biocompatible and with sustained release of the active, being a promising pharmacological tool and confirmed that laser therapy was effective in accelerating the healing process, due to its potential biomodulator, improving inflammatory aspects, promoting rapid healing in skin lesions.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"1058-1072"},"PeriodicalIF":2.9,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140110336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Three-dimensional bioprinted GelMA/GO composite hydrogel for stem cell osteogenic differentiation both in vitro and in vivo.","authors":"Yerong Jiang, Dezhi Zhou, Yanan Jiang","doi":"10.1177/08853282241243337","DOIUrl":"10.1177/08853282241243337","url":null,"abstract":"<p><p>In this study, we evaluated the use of graphene oxide (GO) mixed with methyl methacrylate gelatin (GelMA) for the construction of a microenvironmental implant to repair bone defects in orthopedic surgery. A scaffold containing a GelMA/GO composite with mesenchymal stem cells (MSCs) was constructed using three-dimensional bioprinting. The survival and osteogenic capacity of MSCs in the composite bioink were evaluated using cell viability and proliferation assays, osteogenesis-related gene expression analysis, and implantation under the skin of nude mice. The printing process had little effect on cell viability. We found that GO enhanced cell proliferation but had no significant effect on cell viability. In vitro experiments suggested that GO promoted material-cell interactions and the expression of osteogenesis-related genes. In vivo experiments showed that GO decreased the degradation time of the material and increased calcium nodule deposition. In contrast to pure GelMA, the addition of GO created a suitable microenvironment to promote the differentiation of loaded exogenous MSCs in vitro and in vivo, providing a basis for the repair of bone defects.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"1087-1099"},"PeriodicalIF":2.9,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140335678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Muhammed Tijani Isa, Abdulwadud Yusuf Abdulkarim, Abdullahi Bello, Tajudeen Kolawole Bello, Yusuf Adamu
{"title":"Synthesis and characterization of chitosan for medical applications: A review.","authors":"Muhammed Tijani Isa, Abdulwadud Yusuf Abdulkarim, Abdullahi Bello, Tajudeen Kolawole Bello, Yusuf Adamu","doi":"10.1177/08853282241243010","DOIUrl":"10.1177/08853282241243010","url":null,"abstract":"<p><p>Chitosan has gained considerable recognition within the field of medical applications due to its exceptional biocompatibility and diverse range of properties. Nevertheless, prior reviews have primarily focused on its applications, offering limited insights into its source materials. Hence, there arises a compelling need for a comprehensive review that encompasses the entire chitin and chitosan life cycle: from the source of chitin and chitosan, extraction methods, and specific medical applications, to the various techniques employed in evaluating chitosan's properties. This all-encompassing review delves into the critical aspects of chitin and chitosan extraction, with a strong emphasis on the utilization of natural raw materials. It elucidates the various sources of these raw materials, highlighting their abundance and accessibility. Furthermore, a meticulous examination of extraction methods reveals the prevalent use of hydrochloric acid (HCl) in the demineralization process, alongside citric, formic, and phosphoric acids. Based on current review information, these acids constitute a substantial 69.2% of utilization, surpassing other mentioned acids. Of notable importance, the review underscores the essential parameters for medical-grade chitosan. It advocates for a degree of deacetylation (DDA) falling within the range of 85%-95%, minimal protein content <1%, ash content <2%, and moisture content <10%. In conclusion, these crucial factors contribute to the understanding of Chitosan's production for medical applications, paving the way for advancements in biomedical research and development.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"1036-1057"},"PeriodicalIF":2.9,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140326595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Release of exosomes from injectable silk fibroin and alginate composite hydrogel for treatment of myocardial infarction","authors":"Yunjie Ni, Yinjian Hua, Zhengfei He, Weilv Hu, Zhiyun Chen, Diqing Wang, Xintong Li, Yanfang Sun, Guohua Jiang","doi":"10.1177/08853282241251610","DOIUrl":"https://doi.org/10.1177/08853282241251610","url":null,"abstract":"Myocardial infarction (MI) is considered as a significant cause of death globally. Exosomes (EXOs) are essential for intercellular communication and pathophysiology of several cardiovascular diseases. Nevertheless, the short half-life and rapid clearance of EXOs leads to a lack of therapeutic doses delivered to the lesioned area. Therefore, an injectable silk fibroin and alginate (SF/Alg) composite hydrogel was developed to bind folate receptor-targeted EXOs (FA-EXOs) derived from H9C2 cells for the therapy of myocardial injury following myocardial infarction-ischemia/reperfusion (MI-I/R). The resulting composite exhibits a variety of properties, including adjustable gelation kinetics, shear-thinning injectability, soft and dynamic stability that adapts to the heartbeat, and outstanding cytocompatibility. After injected into the damaged rat heart, administration of SF/Alg + FA-EXOs significantly enhanced cardiac function as demonstrated by improved ejection fraction, fractional shortening and decreased fibrosis area. The results of real-time PCR and immunofluorescence staining show a remarkable up-regulation in the expression of proteins (CD31) and genes (VWF and Serca2a) related to the heart. Conversely, expression of fibrosis-related genes (TGF-β1) decreased significantly. Therefore, the obtained SF/Alg + FA-EXOs system remarkably enhanced the intercellular interactions, promoted cell proliferation and angiogenesis, and achieved an outstanding therapeutic effect on MI.","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":"12 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140839880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Daniel Komatsu, Andrea Rodrigues Esposito Cabrera, Bruna Vanessa Quevedo, Jessica Asami, Adriana Cristina Motta, Stephen Christina de Moraes, Marcia Adriana Tomaz Duarte, Moema de Alencar Hausen, Eliana Aparecida de Rezende Duek
{"title":"Meniscal repair with additive manufacture of bioresorbable polymer: From physicochemical characterization to implantation of 3D printed poly (L-co-D, L lactide-co-trimethylene carbonate) with autologous stem cells in rabbits","authors":"Daniel Komatsu, Andrea Rodrigues Esposito Cabrera, Bruna Vanessa Quevedo, Jessica Asami, Adriana Cristina Motta, Stephen Christina de Moraes, Marcia Adriana Tomaz Duarte, Moema de Alencar Hausen, Eliana Aparecida de Rezende Duek","doi":"10.1177/08853282241248517","DOIUrl":"https://doi.org/10.1177/08853282241248517","url":null,"abstract":"Three-dimensional (3D) structures are actually the state-of-the-art technique to create porous scaffolds for tissue engineering. Since regeneration in cartilage tissue is limited due to intrinsic cellular properties this study aims to develop and characterize three-dimensional porous scaffolds of poly (L-co-D, L lactide-co-trimethylene carbonate), PLDLA-TMC, obtained by 3D fiber deposition technique. The PLDLA-TMC terpolymer scaffolds (70:30), were obtained and characterized by scanning electron microscopy, gel permeation chromatography, differential scanning calorimetry, thermal gravimetric analysis, compression mechanical testing and study on in vitro degradation, which showed its amorphous characteristics, cylindrical geometry, and interconnected pores. The in vitro degradation study showed significant loss of mechanical properties compatible with a decrease in molar mass, accompanied by changes in morphology. The histocompatibility association of mesenchymal stem cells from rabbit’s bone marrow, and PLDLA-TMC scaffolds, were evaluated in the meniscus regeneration, proving the potential of cell culture at in vivo tissue regeneration. Nine New Zealand rabbits underwent total medial meniscectomy, yielding three treatments: implantation of the seeded PLDLA-TMC scaffold, implantation of the unseeded PLDLA-TMC and negative control (defect without any implant). After 24 weeks, the results revealed the presence of fibrocartilage in the animals treated with polymer. However, the regeneration obtained with the seeded PLDLA-TMC scaffolds with mesenchymal stem cells had become intimal to mature fibrocartilaginous tissue of normal meniscus both macroscopically and histologically. This study demonstrated the effectiveness of the PLDLA-TMC scaffold in meniscus regeneration and the potential of mesenchymal stem cells in tissue engineering, without the use of growth factors. It is concluded that bioresorbable polymers represent a promising alternative for tissue regeneration.","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":"9 1","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140635873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}