Madeline R Badrak, Judy Senanayake, Ahmad Zunnu Rain, Harini G Sundararaghavan
{"title":"Silk fibroin-hyaluronic acid nanofibers for peripheral nerve regeneration.","authors":"Madeline R Badrak, Judy Senanayake, Ahmad Zunnu Rain, Harini G Sundararaghavan","doi":"10.1177/08853282251329315","DOIUrl":null,"url":null,"abstract":"<p><p>Peripheral nerve injuries are common and a major source of pain that can lead to debilitating loss of function. Current treatments are limited, with autologous nerve grafts being the gold standard treatment for nerve injuries. However, autografting is not always successful and can lead to increased debilitation through donor site morbidity. Tissue engineering seeks to improve nerve injury treatment though the use of nerve conduits. Conduits made from a functional biomaterial can be implanted into a nerve injury site encouraging and controlling axonal regrowth without causing additional harm to the patient. Both silk fibroin (SF) and hyaluronic acid (HA) have been proven successful in the field of neural tissue engineering. SF has excellent mechanical properties and is biocompatible. HA is part of the extracellular matrix and had been used in nerve regeneration applications. This study developed aligned combination SF-HA nanofibers through electrospinning that could be used within a nerve conduit. Both materials were methacrylated to allow for photocrosslinking and additional control over material properties. Methcrylated SF-HA was tested alongside a material containing only methacrylated HA that has already proven to be effective in literature. When characterizing the materials, it was found that through chemical methacrylation HA was substituted at 60% while SF reported a 30% substitution. Electrospun SF-HA nanofibers were found to have a greater diameter than HA fibers; however, SF-HA was found to be more aligned with greater surface hydrophobicity. Mechanically, it was found that both materials exceeded the elastic modulus of native tissue, but SF-HA far exceeded HA in elasticity and overall fiber extension. Furthermore, human Schwann cells attached, proliferated, and released more pro-regenerative growth factors on SF-HA than HA. Dorsal root ganglia neurons also displayed longer neurite extensions on SF-HA fibers. We concluded that SF-HA nanofibers have potential as a nerve conduit material.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"8853282251329315"},"PeriodicalIF":2.3000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/08853282251329315","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Peripheral nerve injuries are common and a major source of pain that can lead to debilitating loss of function. Current treatments are limited, with autologous nerve grafts being the gold standard treatment for nerve injuries. However, autografting is not always successful and can lead to increased debilitation through donor site morbidity. Tissue engineering seeks to improve nerve injury treatment though the use of nerve conduits. Conduits made from a functional biomaterial can be implanted into a nerve injury site encouraging and controlling axonal regrowth without causing additional harm to the patient. Both silk fibroin (SF) and hyaluronic acid (HA) have been proven successful in the field of neural tissue engineering. SF has excellent mechanical properties and is biocompatible. HA is part of the extracellular matrix and had been used in nerve regeneration applications. This study developed aligned combination SF-HA nanofibers through electrospinning that could be used within a nerve conduit. Both materials were methacrylated to allow for photocrosslinking and additional control over material properties. Methcrylated SF-HA was tested alongside a material containing only methacrylated HA that has already proven to be effective in literature. When characterizing the materials, it was found that through chemical methacrylation HA was substituted at 60% while SF reported a 30% substitution. Electrospun SF-HA nanofibers were found to have a greater diameter than HA fibers; however, SF-HA was found to be more aligned with greater surface hydrophobicity. Mechanically, it was found that both materials exceeded the elastic modulus of native tissue, but SF-HA far exceeded HA in elasticity and overall fiber extension. Furthermore, human Schwann cells attached, proliferated, and released more pro-regenerative growth factors on SF-HA than HA. Dorsal root ganglia neurons also displayed longer neurite extensions on SF-HA fibers. We concluded that SF-HA nanofibers have potential as a nerve conduit material.
期刊介绍:
The Journal of Biomaterials Applications is a fully peer reviewed international journal that publishes original research and review articles that emphasize the development, manufacture and clinical applications of biomaterials.
Peer-reviewed articles by biomedical specialists from around the world cover:
New developments in biomaterials, R&D, properties and performance, evaluation and applications
Applications in biomedical materials and devices - from sutures and wound dressings to biosensors and cardiovascular devices
Current findings in biological compatibility/incompatibility of biomaterials
The Journal of Biomaterials Applications publishes original articles that emphasize the development, manufacture and clinical applications of biomaterials. Biomaterials continue to be one of the most rapidly growing areas of research in plastics today and certainly one of the biggest technical challenges, since biomaterial performance is dependent on polymer compatibility with the aggressive biological environment. The Journal cuts across disciplines and focuses on medical research and topics that present the broadest view of practical applications of biomaterials in actual clinical use.
The Journal of Biomaterial Applications is devoted to new and emerging biomaterials technologies, particularly focusing on the many applications which are under development at industrial biomedical and polymer research facilities, as well as the ongoing activities in academic, medical and applied clinical uses of devices.