{"title":"Coacervation-responsive cubosome containing hyaluronic acid and albumin complex.","authors":"Hyeon Ki Son, Panalee Pomseethong, Jin-Chul Kim","doi":"10.1177/08853282251334466","DOIUrl":null,"url":null,"abstract":"<p><p>Coacervation-responsive cubosomes were prepared by loading a complex of hydrophobically modified hyaluronic acid (HmHA) and hydrophobically modified albumin (HmAlb) and steviol glycoside (SG) into the water channels. Hyaluronic acid and albumin were modified with a lipid chain, and the HmHA and HmAlb were characterized by <sup>1</sup>H NMR and FT-IR spectroscopy, respectively. The formation of the HmHA/HmAlb coacervate complex was optimized when the mass ratio was 1:9 under pH 4.0 conditions. The phase transition temperature of the cubic phase complex was observed to increase slightly from 60.9°C to 61.6°C as a result of the inclusion of the coacervate complex, as evidenced by differential scanning calorimetry. The maximum release degree of SG at 22°C was suppressed to 30.9% due to the coacervate at pH 3, and it was promoted to 75.9% at pH 5.5 due to the dissolution of the electrostatic complex as the pH value increased. The monoolein of the cubosDome enhanced the in vitro skin permeation of the cubosomal SG, as it could play a role as a skin permeation enhancer. The coacervation-responsive cubosome could be potentially used as a drug carrier that can release its content in a pH-controlled manner.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"8853282251334466"},"PeriodicalIF":2.3000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/08853282251334466","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Coacervation-responsive cubosomes were prepared by loading a complex of hydrophobically modified hyaluronic acid (HmHA) and hydrophobically modified albumin (HmAlb) and steviol glycoside (SG) into the water channels. Hyaluronic acid and albumin were modified with a lipid chain, and the HmHA and HmAlb were characterized by 1H NMR and FT-IR spectroscopy, respectively. The formation of the HmHA/HmAlb coacervate complex was optimized when the mass ratio was 1:9 under pH 4.0 conditions. The phase transition temperature of the cubic phase complex was observed to increase slightly from 60.9°C to 61.6°C as a result of the inclusion of the coacervate complex, as evidenced by differential scanning calorimetry. The maximum release degree of SG at 22°C was suppressed to 30.9% due to the coacervate at pH 3, and it was promoted to 75.9% at pH 5.5 due to the dissolution of the electrostatic complex as the pH value increased. The monoolein of the cubosDome enhanced the in vitro skin permeation of the cubosomal SG, as it could play a role as a skin permeation enhancer. The coacervation-responsive cubosome could be potentially used as a drug carrier that can release its content in a pH-controlled manner.
期刊介绍:
The Journal of Biomaterials Applications is a fully peer reviewed international journal that publishes original research and review articles that emphasize the development, manufacture and clinical applications of biomaterials.
Peer-reviewed articles by biomedical specialists from around the world cover:
New developments in biomaterials, R&D, properties and performance, evaluation and applications
Applications in biomedical materials and devices - from sutures and wound dressings to biosensors and cardiovascular devices
Current findings in biological compatibility/incompatibility of biomaterials
The Journal of Biomaterials Applications publishes original articles that emphasize the development, manufacture and clinical applications of biomaterials. Biomaterials continue to be one of the most rapidly growing areas of research in plastics today and certainly one of the biggest technical challenges, since biomaterial performance is dependent on polymer compatibility with the aggressive biological environment. The Journal cuts across disciplines and focuses on medical research and topics that present the broadest view of practical applications of biomaterials in actual clinical use.
The Journal of Biomaterial Applications is devoted to new and emerging biomaterials technologies, particularly focusing on the many applications which are under development at industrial biomedical and polymer research facilities, as well as the ongoing activities in academic, medical and applied clinical uses of devices.