{"title":"Caprine dermal scaffolds for repair of full-thickness skin wounds in rabbits.","authors":"Parvez Ahmad, Sangeeta Devi Khangembam, Anil Kumar Gangwar, Vipin Kumar Yadav, Prafull Kumar Singh, Yogendra Singh, Ravi Prakash Goyal, Surendra Pratap Chakraverty, Rajesh Kumar Verma","doi":"10.1177/08853282251329559","DOIUrl":null,"url":null,"abstract":"<p><p>Biological scaffolds prepared after decellularization are used for the restoration of damaged tissues. A number of chemicals are used for bioscaffold preparation, and some of them damage their composition and architecture. Herein, we investigated the Sapindus mukorossi fruit pericarp extract (SPE) (5%) for decellularization of the caprine dermis. The dermal samples were processed in 5% SPE over magnetic stirrer for 96h at room temperature. The decellularization efficiency of SPE was analyzed by histological examination, DAPI staining, scanning electron microscopy (SEM), quantification of DNA hydroxyproline and hemocompatibility determination. Further, these acellular caprine dermal scaffolds were transplanted on full thickness skin wounds of group III New Zealand white rabbits. The wounds were left open in group I (Sham) and reconstructed by autograft in group II (<i>n</i> = 6 in each group). Continuous agitation of native caprine dermal tissues in 5% SPE for 96 hours leads to complete decellularization without affecting the extracellular matrix architecture. Microscopic observation of decellularized samples did not show any nuclei. DNA quantity was reduced (<i>p</i> < .05) in decellularized samples and scaffolds were found to be hemocompatible. Complete healing was observed on day 28 in groups II and III. No significant difference was noted in IgG in all the groups. Quantitative assessment of MDA showed a significant increase in groups I and II. Our results suggested that the 5% SPE solution effectively decellularized the native caprine dermis and the scaffolds were well tolerated by the animals.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"8853282251329559"},"PeriodicalIF":2.3000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/08853282251329559","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Biological scaffolds prepared after decellularization are used for the restoration of damaged tissues. A number of chemicals are used for bioscaffold preparation, and some of them damage their composition and architecture. Herein, we investigated the Sapindus mukorossi fruit pericarp extract (SPE) (5%) for decellularization of the caprine dermis. The dermal samples were processed in 5% SPE over magnetic stirrer for 96h at room temperature. The decellularization efficiency of SPE was analyzed by histological examination, DAPI staining, scanning electron microscopy (SEM), quantification of DNA hydroxyproline and hemocompatibility determination. Further, these acellular caprine dermal scaffolds were transplanted on full thickness skin wounds of group III New Zealand white rabbits. The wounds were left open in group I (Sham) and reconstructed by autograft in group II (n = 6 in each group). Continuous agitation of native caprine dermal tissues in 5% SPE for 96 hours leads to complete decellularization without affecting the extracellular matrix architecture. Microscopic observation of decellularized samples did not show any nuclei. DNA quantity was reduced (p < .05) in decellularized samples and scaffolds were found to be hemocompatible. Complete healing was observed on day 28 in groups II and III. No significant difference was noted in IgG in all the groups. Quantitative assessment of MDA showed a significant increase in groups I and II. Our results suggested that the 5% SPE solution effectively decellularized the native caprine dermis and the scaffolds were well tolerated by the animals.
期刊介绍:
The Journal of Biomaterials Applications is a fully peer reviewed international journal that publishes original research and review articles that emphasize the development, manufacture and clinical applications of biomaterials.
Peer-reviewed articles by biomedical specialists from around the world cover:
New developments in biomaterials, R&D, properties and performance, evaluation and applications
Applications in biomedical materials and devices - from sutures and wound dressings to biosensors and cardiovascular devices
Current findings in biological compatibility/incompatibility of biomaterials
The Journal of Biomaterials Applications publishes original articles that emphasize the development, manufacture and clinical applications of biomaterials. Biomaterials continue to be one of the most rapidly growing areas of research in plastics today and certainly one of the biggest technical challenges, since biomaterial performance is dependent on polymer compatibility with the aggressive biological environment. The Journal cuts across disciplines and focuses on medical research and topics that present the broadest view of practical applications of biomaterials in actual clinical use.
The Journal of Biomaterial Applications is devoted to new and emerging biomaterials technologies, particularly focusing on the many applications which are under development at industrial biomedical and polymer research facilities, as well as the ongoing activities in academic, medical and applied clinical uses of devices.