Anti-inflammatory and antioxidant effects of haematococcus carbon dots in ulcerative colitis: A nanoparticle-based approach.

IF 2.3 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Yuting Liu, Mengqing Wang, Chaoyan Zhang
{"title":"Anti-inflammatory and antioxidant effects of haematococcus carbon dots in ulcerative colitis: A nanoparticle-based approach.","authors":"Yuting Liu, Mengqing Wang, Chaoyan Zhang","doi":"10.1177/08853282251333240","DOIUrl":null,"url":null,"abstract":"<p><p>Ulcerative colitis (UC) is a chronic, non-specific inflammatory disease affecting the colon and rectum, classified as a type of inflammatory bowel disease (IBD). This study aimed to evaluate the therapeutic effects of Haematococcus carbon dots (HP-CDs) on dextran sulfate sodium (DSS)-induced ulcerative colitis in mice. HP-CDs were synthesized from Haematococcus pluvialis (HP) using a hydrothermal method involving Rhodococcus amphitrite. The effects of HP-CDs on DSS-induced ulcerative colitis in mice were evaluated through histological and pathological analyses. Results demonstrated that HP-CDs significantly alleviated colitis, reducing body weight loss, Disease Activity Index (DAI) scores, and colonic atrophy. Moreover, HP-CDs suppressed MPO activity and decreased the expression of pro-inflammatory cytokines, including TNF-α, IL-1β, and IL-6, in colonic tissues. These findings indicate that HP-CDs have potential as a novel therapeutic agent for UC.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"8853282251333240"},"PeriodicalIF":2.3000,"publicationDate":"2025-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/08853282251333240","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Ulcerative colitis (UC) is a chronic, non-specific inflammatory disease affecting the colon and rectum, classified as a type of inflammatory bowel disease (IBD). This study aimed to evaluate the therapeutic effects of Haematococcus carbon dots (HP-CDs) on dextran sulfate sodium (DSS)-induced ulcerative colitis in mice. HP-CDs were synthesized from Haematococcus pluvialis (HP) using a hydrothermal method involving Rhodococcus amphitrite. The effects of HP-CDs on DSS-induced ulcerative colitis in mice were evaluated through histological and pathological analyses. Results demonstrated that HP-CDs significantly alleviated colitis, reducing body weight loss, Disease Activity Index (DAI) scores, and colonic atrophy. Moreover, HP-CDs suppressed MPO activity and decreased the expression of pro-inflammatory cytokines, including TNF-α, IL-1β, and IL-6, in colonic tissues. These findings indicate that HP-CDs have potential as a novel therapeutic agent for UC.

碳红球菌点在溃疡性结肠炎中的抗炎和抗氧化作用:一种基于纳米粒子的方法。
溃疡性结肠炎(UC)是一种影响结肠和直肠的慢性非特异性炎症性疾病,被归类为炎症性肠病(IBD)的一种。本研究旨在探讨碳点红球菌(HP-CDs)对硫酸葡聚糖钠(DSS)诱导的小鼠溃疡性结肠炎的治疗作用。以雨红球菌(HP)为原料,采用水热法合成HP- cds。通过组织学和病理分析评价HP-CDs对dss诱导的小鼠溃疡性结肠炎的影响。结果显示,HP-CDs可显著缓解结肠炎,减轻体重减轻、疾病活动指数(DAI)评分和结肠萎缩。此外,HP-CDs还能抑制MPO活性,降低结肠组织中促炎细胞因子的表达,包括TNF-α、IL-1β和IL-6。这些发现表明HP-CDs有潜力成为UC的新型治疗剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biomaterials Applications
Journal of Biomaterials Applications 工程技术-材料科学:生物材料
CiteScore
5.10
自引率
3.40%
发文量
144
审稿时长
1.5 months
期刊介绍: The Journal of Biomaterials Applications is a fully peer reviewed international journal that publishes original research and review articles that emphasize the development, manufacture and clinical applications of biomaterials. Peer-reviewed articles by biomedical specialists from around the world cover: New developments in biomaterials, R&D, properties and performance, evaluation and applications Applications in biomedical materials and devices - from sutures and wound dressings to biosensors and cardiovascular devices Current findings in biological compatibility/incompatibility of biomaterials The Journal of Biomaterials Applications publishes original articles that emphasize the development, manufacture and clinical applications of biomaterials. Biomaterials continue to be one of the most rapidly growing areas of research in plastics today and certainly one of the biggest technical challenges, since biomaterial performance is dependent on polymer compatibility with the aggressive biological environment. The Journal cuts across disciplines and focuses on medical research and topics that present the broadest view of practical applications of biomaterials in actual clinical use. The Journal of Biomaterial Applications is devoted to new and emerging biomaterials technologies, particularly focusing on the many applications which are under development at industrial biomedical and polymer research facilities, as well as the ongoing activities in academic, medical and applied clinical uses of devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信