Journal of Biomaterials Applications最新文献

筛选
英文 中文
Gingival keratinocyte adhesion on atomic layer-deposited hydroxyapatite coated titanium. 羟基磷灰石包覆钛原子层沉积的牙龈角化细胞粘附。
IF 2.3 4区 医学
Journal of Biomaterials Applications Pub Date : 2025-04-01 Epub Date: 2025-01-08 DOI: 10.1177/08853282251313503
Faleh Abushahba, Sini Riivari, Nagat Areid, Elisa Närvä, Elina Kylmäoja, Mikko Ritala, Juha Tuukkanen, Pekka K Vallittu, Timo O Närhi
{"title":"Gingival keratinocyte adhesion on atomic layer-deposited hydroxyapatite coated titanium.","authors":"Faleh Abushahba, Sini Riivari, Nagat Areid, Elisa Närvä, Elina Kylmäoja, Mikko Ritala, Juha Tuukkanen, Pekka K Vallittu, Timo O Närhi","doi":"10.1177/08853282251313503","DOIUrl":"10.1177/08853282251313503","url":null,"abstract":"<p><p><b>T</b>his study aimed to evaluate the effects of the atomic layer deposited hydroxyapatite (ALD-HA) coating of the titanium (Ti) surface on human gingival keratinocyte (HGK) cell adhesion, spreading, viability, and hemidesmosome (HD) formation. Grade 2 square-shaped Ti substrates were used (<i>n</i> = 62). Half of the substrates were ALD-HA coated, while the other half were used as non-coated controls (NC). The ALD-HA surface was characterized with scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) analysis. The initial cell adhesion and HD formation of HGKs were evaluated after a 24-h cultivation period. The cell proliferation was assessed by cultivating cells for 1, 3, and 7 d. The expression levels of the integrin mediating cell adhesion were detected with the Western Blot method. In addition, cell spreading and expression of the proteins mediating cell adhesion were imaged using a confocal microscope. SEM-EDS analysis demonstrated the formation of HA on the ALD-HA surfaces. The relative cell attachment was significantly higher (<i>p</i> < .05) on the ALD-HA compared to the NC surface after 1 and 3 d of cell culture. No significant difference was found in integrin α6 or β4 expression. The microscope evaluation showed significantly increased cell spreading with peripheral HD expression on ALD-HA compared to the NC surfaces (<i>p</i> = .0001). Moreover, laminin γ2 expression was significantly higher on the ALD-HA than on the NC surfaces (<i>p</i> < .001). Compared to the NC Ti surface, the ALD-HA coating has favorable effects on HGK proliferation, growth, and cell spreading. This indicates that the ALD-HA coating has good potential for improving mucosal attachment on implant surfaces.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"1055-1063"},"PeriodicalIF":2.3,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142949414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of polyvinylpyrrolidone-catechol-derived chitosan nanoconjugates allowed for kidney-targeted treatment of cisplatin-induced acute kidney injury and nursing care management. 聚乙烯吡咯烷酮-儿茶酚衍生壳聚糖纳米偶联物治疗顺铂急性肾损伤及护理管理的研究。
IF 2.3 4区 医学
Journal of Biomaterials Applications Pub Date : 2025-04-01 Epub Date: 2025-01-07 DOI: 10.1177/08853282241304396
Guixian Chen
{"title":"Investigation of polyvinylpyrrolidone-catechol-derived chitosan nanoconjugates allowed for kidney-targeted treatment of cisplatin-induced acute kidney injury and nursing care management.","authors":"Guixian Chen","doi":"10.1177/08853282241304396","DOIUrl":"10.1177/08853282241304396","url":null,"abstract":"<p><p>Acute kidney injury (AKI) resulting from cisplatin (Cs) chemotherapy presents a significant challenge in clinical management. The study aimed to fabricate a novel compound Polyvinylpyrrolidone-catechol-derived chitosan nanoconjugates (PCChi-NC) for targeting Cs-induced AKI. Characterization studies utilizing UV-visible spectrophotometry, FT-IR, XRD, and TEM revealed a spherical morphology with diameters ranging from 20 to 60 nm. In vitro assessments utilizing HEK 293 cell lines demonstrated the biocompatibility of PCChi-NC without eliciting toxic effects. Furthermore, PCChi-NC exhibited a notable reduction in Cs-induced cell death in kidney cells, as evidenced by biomarker analysis. Anti-inflammatory analysis of mouse kidney homogenates revealed a decrease in TNF-α and IL-1β levels, indicative of the therapeutic efficacy of PCChi-NC in mitigating Cs-induced kidney inflammation. Moreover, In vivo, experimental analysis was evidenced by stable body weight and histopathological changes in mice. Our findings highlight the potential of PCChi-NC as a promising candidate for targeted therapy in Cs-induced AKI, owing to its unique renal targeting capacity.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"1084-1096"},"PeriodicalIF":2.3,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142947926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multifunctional electrospinning periosteum: Development status and prospect. 多功能静电纺丝骨膜:发展现状与展望。
IF 2.3 4区 医学
Journal of Biomaterials Applications Pub Date : 2025-04-01 Epub Date: 2025-01-11 DOI: 10.1177/08853282251315186
Jinli Zhu, Meifeng Li, Shuoshuo Yang, Yang Zou, Yonggang Lv
{"title":"Multifunctional electrospinning periosteum: Development status and prospect.","authors":"Jinli Zhu, Meifeng Li, Shuoshuo Yang, Yang Zou, Yonggang Lv","doi":"10.1177/08853282251315186","DOIUrl":"10.1177/08853282251315186","url":null,"abstract":"<p><p>In the repair of large bone defects, loss of the periosteum can result in diminished osteoinductive activity, nonunion, and incomplete regeneration of the bone structure, ultimately compromising the efficiency of bone regeneration. Therefore, the research and development of tissue-engineered periosteum which can replace the periosteum function has become the focus of current research. The functionalized electrospinning periosteum is expected to mimic the natural periosteum and enhance bone repair processes more effectively. This review explores the construction strategies for functionalized electrospun periosteum from the following perspectives: ⅰ) bioactive factor modification (bone morphogenetic protein-2 (BMP-2), vascular endothelial growth factor (VEGF) etc.), ⅱ) inorganic compound modification, ⅲ) drug modification, ⅳ) artificial periosteum in response to physical stimuli. Furthermore, the construction of artificial periosteum through electrospinning, in conjunction with other strategies, is also analyzed. Finally, the current challenges and prospects for the development of electrospinning periosteum are also discussed.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"996-1013"},"PeriodicalIF":2.3,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142965038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development and evaluation of a liposome hydrogel system for enhanced delivery of drospirenone at higher doses. 一种脂质体水凝胶系统的开发和评价,用于提高高剂量的屈螺酮的递送。
IF 2.3 4区 医学
Journal of Biomaterials Applications Pub Date : 2025-03-01 Epub Date: 2024-12-04 DOI: 10.1177/08853282241305516
Xuena Zhang, Xuehan Wang, Juan Xu, Ting Wang
{"title":"Development and evaluation of a liposome hydrogel system for enhanced delivery of drospirenone at higher doses.","authors":"Xuena Zhang, Xuehan Wang, Juan Xu, Ting Wang","doi":"10.1177/08853282241305516","DOIUrl":"10.1177/08853282241305516","url":null,"abstract":"<p><p>Drospirenone (DROP) is a highly effective, low-toxicity, safe new generation progestin that counteracts estrogen-related sodium retention, is well tolerated, and has a positive effect on premenstrual syndrome (PMS). However, the low water solubility of DROP and its chemical instability resulted in low bioavailability. In this study, we developed a two-step delivery system to enhance drospirenone's solubility and stability. We prepared a drospirenone liposome complex to optimize the encapsulation process and achieve an encapsulation efficiency of (84.9 ± 0.73) %, with an 878-fold increase in solubility under optimal conditions. To address the instability of high drug-loading liposomes, we immobilized the drospirenone liposome inclusion complex using a cellulose-based hydrogel. The system achieved uniform loading of liposomes in the hydrogel, as confirmed by SEM and FTIR analysis. 0.5 g hydrogel can be loaded with up to 96.48 mg drospirenone, and the encapsulation efficiency is (80.4 ± 1.17%). It was indicating the potential for wider application of drospirenone with enhanced water solubility and improved stability. At the same time, it also provides support for sustained-release systems or large dose drug delivery.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"840-854"},"PeriodicalIF":2.3,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142769387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effects of process parameters on the mechanical properties and degradation behavior of Fe/HA biodegradable materials. 工艺参数对铁/HA生物降解材料力学性能和降解行为的影响。
IF 2.3 4区 医学
Journal of Biomaterials Applications Pub Date : 2025-03-01 Epub Date: 2024-12-20 DOI: 10.1177/08853282241310592
Yuzhen Feng, Nan Huang, Jing Guo, Shuwen Chen, Yingxue Teng, Shanshan Chen
{"title":"The effects of process parameters on the mechanical properties and degradation behavior of Fe/HA biodegradable materials.","authors":"Yuzhen Feng, Nan Huang, Jing Guo, Shuwen Chen, Yingxue Teng, Shanshan Chen","doi":"10.1177/08853282241310592","DOIUrl":"10.1177/08853282241310592","url":null,"abstract":"<p><p>HA/Fe composites were prepared by powder metallurgy. The effects of ball milling time, pressing pressure, and sintering temperature on the porosity and hardness of the composites were investigated, and their mechanical properties and biocompatibility were evaluated. The results show that as the ball milling time increases (30∼60min), the average particle size initially decreases and then increases (82.91∼53.49∼77.98 μm). Additionally, an appropriate increase in pressing pressure and sintering temperature can decrease the composite's porosity and increase its hardness. When the pressing pressure is 27 KN and the sintering temperature is 1000°C, the composite material has excellent mechanical properties (hardness 268.5 Hv, compressive strength 106.736 MPa) and good in vitro biocompatibility. The hemolysis rate of the sample was 1.719518 %. When the concentration of the extract was 50 %, the cell proliferation rate could reach 136.26 %. Furthermore, the degradation properties of the composites were studied. At 12 months the corrosion rate of HA/Fe composites reached 0.3173 mm/a. It was also observed varying degradation mechanisms was different in different soaking cycles, and the dominant degradation mechanism was gradually changed from HA in the early stage to Fe in the later stage, which played a positive guiding role in the development of iron matrix composites with different degradation rates.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"866-879"},"PeriodicalIF":2.3,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142864354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Self-assembling peptide hydrogel scaffold accelerates healing of patellar tendon injury: A histological and biomechanical study. 自组装肽水凝胶支架可加速髌腱损伤的愈合:组织学和生物力学研究
IF 2.3 4区 医学
Journal of Biomaterials Applications Pub Date : 2025-03-01 Epub Date: 2024-11-05 DOI: 10.1177/08853282241299212
Takashi Ishitani, Shuhei Otsuki, Shota Yamauchi, Yoshinori Okamoto, Hitoshi Wakama, Shunsuke Sezaki, Junya Matsuyama, Kaito Nakamura, Takeru Iwata, Chuji Hirota, Yoshiaki Hirano
{"title":"Self-assembling peptide hydrogel scaffold accelerates healing of patellar tendon injury: A histological and biomechanical study.","authors":"Takashi Ishitani, Shuhei Otsuki, Shota Yamauchi, Yoshinori Okamoto, Hitoshi Wakama, Shunsuke Sezaki, Junya Matsuyama, Kaito Nakamura, Takeru Iwata, Chuji Hirota, Yoshiaki Hirano","doi":"10.1177/08853282241299212","DOIUrl":"10.1177/08853282241299212","url":null,"abstract":"<p><p>Although KI24RGDS peptide hydrogel that acts as a cell adhesion has been reported to repair tissue in meniscus injury, its effect on tendon injuries remains unknown. The purpose of this study was to clarify the effect of KI24RGDS for tendon repair based on histological and biomechanical evaluation. After introducing defects (length: 10 mm; width: 3 mm) at the centers of rabbits' patellar tendons, and the KI24RGDS group was implanted with KI24RGDS and observed for 8 weeks. KI24RGDS implantation resulted in limited tendon elongation and better histological scores with uniformed collagen fiber orientation and early vascularization. The failure load of the patellar tendon was higher in the KI24RGDS group than that in the defect group (<i>p</i> < 0.05) and no significant difference with the control group (intact patellar tendon) at 8 weeks postoperatively. In conclusion, KI24RGDS administration might have therapeutic potential for tendon injuries by accelerating collagen remodeling.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"880-890"},"PeriodicalIF":2.3,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142583322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biomimetic niosomal versus liposomal nanoparticle-based aspirin injection for treating stroke and myocardial infarction. 仿生乳质体与脂质体纳米颗粒为基础的阿司匹林注射液治疗脑卒中和心肌梗死。
IF 2.3 4区 医学
Journal of Biomaterials Applications Pub Date : 2025-03-01 Epub Date: 2024-12-17 DOI: 10.1177/08853282241307908
Bhavana Raj, Harika Sapa, Shona S Shaji, Kaladhar Kamalasanan
{"title":"Biomimetic niosomal versus liposomal nanoparticle-based aspirin injection for treating stroke and myocardial infarction.","authors":"Bhavana Raj, Harika Sapa, Shona S Shaji, Kaladhar Kamalasanan","doi":"10.1177/08853282241307908","DOIUrl":"10.1177/08853282241307908","url":null,"abstract":"<p><p>In this work, we are comparing biomimetic niosomal nanoparticles (BNNs) with biomimetic liposomal nanoparticles (BLNs) and studying their drug carrier properties. A-BNNs and A-BLNs are prepared by lipid hydration method and characterized using DLS for size and zeta potential analysis, surface morphology by SEM, structural details by TEM, crystallinity and phase change by XRD, thermodynamic properties by DSC, TGA and DTGA, drug carrier properties by entrapment efficiency, drug release studies by open-end tube method and its mechanistic assessment by fitting with various models such as zero order, first order, Higuchi and Korsmeyer-Peppas models. The A-BNNs had an average size of 157.0 ± 3.58 nm and A-BLNs had an average size of 173 ± 1.24 nm. The A-BNNs had an average zeta potential of -29.0 ± 1.11 mV and A-BLNs had an average zeta potential of -46.5 ± 1.11 mV. The A-BNNs have an average entrapment efficiency of 94 ± 0.4% and A-BLNs have an average entrapment efficiency of 98 ± 0.14%. The BNNs have an average drug release of 78.12 ± 1.57% and A-BLNs have an average release of 98.41 ± 1.87% over 24 hours. Our results show that the vesicular size dependence influences the resulting nanoparticle drug carrier properties. This is a robust demonstration of the phenomena at the nanoscale that the precursor vesicular system size dependency will be reflected in bulk-engineered nanoparticle properties. These novel nanoparticles are potential candidates for development as an injection to suppress clots in stroke and myocardial infarction.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"952-968"},"PeriodicalIF":2.3,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142835702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Levofloxacin-loaded silicone contact lenses materials for ocular drug delivery. 左氧氟沙星硅酮隐形眼镜眼部给药材料。
IF 2.3 4区 医学
Journal of Biomaterials Applications Pub Date : 2025-03-01 Epub Date: 2024-12-24 DOI: 10.1177/08853282241312089
Xuefang Guo, Ying Sun, Jing Qiao, Ben Fan, Xueqin Zhang
{"title":"Levofloxacin-loaded silicone contact lenses materials for ocular drug delivery.","authors":"Xuefang Guo, Ying Sun, Jing Qiao, Ben Fan, Xueqin Zhang","doi":"10.1177/08853282241312089","DOIUrl":"10.1177/08853282241312089","url":null,"abstract":"<p><p>Silicone contact lenses (SCL), as an emerging ocular drug delivery system, achieve controlled drug release. However, the existing drug loading methods have limitations such as low drug uptake, complicated operation process, poor welling rate and transmittance of the lens after drug loading. In this study, an effective microemulsion soaking method was proposed to increase the drug-loading capacity of silicone contact lenses. Levofloxacin (LVF) was encapsulated into the microemulsion by direct agitation, then the microemulsion was loaded into silicone contact lenses using the immersion method. The adsorption capacity of levofloxacin and its effect on drug release kinetics were explored. The results showed that the particle size of the microemulsion was approximately 160 nm. The levofloxacin microemulsion soaking method (LVF-ME-SCL) significantly enhanced the drug loading of levofloxacin in the silicone contact lenses, achieving a maximum drug loading of 216.32 ± 1.15 μg/lens (<i>p</i> > 0.05). The total release rate of levofloxacin was 95.96% when the sustained release time was 10 h, and the drug leakage observed after 10 h was negligible. The survival rate of <i>E. coli</i> and <i>S. aureus</i> in LVF-ME-SCL-1 (LVF concentration was 4.8 mg/mL) group was 0 and 19.33 ± 0.02% (<i>p</i> < 0.0001), with a significant difference, indicating that the drug-loaded silicone contact lenses exhibited effective bactericidal properties against <i>E. coli</i> and <i>S. aureus</i>. Following the addition of maximum levofloxacin, the surface contact angle of silicone contact lenses decreased significantly to 32.88 ± 1.19° (<i>p</i> > 0.05), while the swelling, mechanical properties, and oxygen permeability remained relatively unchanged. There was no significant decrease in the transmittance of the contact lenses after the addition of levofloxacin, which remained above 95%. In conclusion, these results show that the microemulsion impregnation method effectively improves the drug loading and sustained release time of levofloxacin, and maintains lens performance stability before and after drug loading, so it is expected to be used in ophthalmic treatment.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"855-865"},"PeriodicalIF":2.3,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142885748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced targeted drug delivery to hepatocellular carcinoma using Cucurbit[6]uril-modified ZIF-8 nanoparticle. 利用瓜氨酸修饰的ZIF-8纳米颗粒增强肝癌靶向药物递送。
IF 2.3 4区 医学
Journal of Biomaterials Applications Pub Date : 2025-03-01 Epub Date: 2024-12-07 DOI: 10.1177/08853282241306836
Mu-Yue Zheng, Hao Zheng, Yan Zeng, Tong Sun, Fang-Zhong Zhang, Yu-Lin Wang, Hai-Shuang Wang, Rong-Guang Lin
{"title":"Enhanced targeted drug delivery to hepatocellular carcinoma using Cucurbit[6]uril-modified ZIF-8 nanoparticle.","authors":"Mu-Yue Zheng, Hao Zheng, Yan Zeng, Tong Sun, Fang-Zhong Zhang, Yu-Lin Wang, Hai-Shuang Wang, Rong-Guang Lin","doi":"10.1177/08853282241306836","DOIUrl":"10.1177/08853282241306836","url":null,"abstract":"<p><p>Building on our innovative approach to combatting cancer, this study explores the development of a sophisticated hybrid nanocarrier system leveraging the unique properties of allyl oxide cucurbit[6]uril with galactose clusters (AOQ[6]@Gal) to modify ZIF-8 nanoparticles. These nanoparticles are designed to encapsulate and efficiently deliver the anticancer drugs doxorubicin (DOX) and curcumin (CUR), enhancing their water solubility and stability, while also providing active targeting towards hepatocellular carcinoma cells. The comprehensive characterization of AOQ[6]@Gal@ZIF-8@Drug nanoparticles revealed promising outcomes, including drug loading efficiencies of 9.7% for DOX and 8.3% for CUR, alongside a pH-responsive release profile that ensures effective drug delivery in the tumor microenvironment. Cytotoxicity studies underscored the hybrid system's superior safety profile, exhibiting minimal toxicity towards normal hepatocytes HL7702 and pronounced cytotoxic effects against hepatocellular carcinoma cells HepG2. These results highlight the hybrid nanocarrier's potential as a targeted, efficient, and safe platform for the delivery of chemotherapy agents in the treatment of liver cancer.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"920-932"},"PeriodicalIF":2.3,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142791737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diels-Alder reaction in hydrogel synthesis: Mechanisms and functional aspects. 水凝胶合成中的 Diels-Alder 反应:机理和功能方面。
IF 2.3 4区 医学
Journal of Biomaterials Applications Pub Date : 2025-03-01 Epub Date: 2024-12-13 DOI: 10.1177/08853282241306245
Yi Gui Zhou, Song Kai Li, Yun Xue, Bo Fan, Qiu Ming Gao, Long Wen Zhan, Rui Tang Liu, Yun Fei Li, Rui Long Sun, Yong Zheng Tian
{"title":"Diels-Alder reaction in hydrogel synthesis: Mechanisms and functional aspects.","authors":"Yi Gui Zhou, Song Kai Li, Yun Xue, Bo Fan, Qiu Ming Gao, Long Wen Zhan, Rui Tang Liu, Yun Fei Li, Rui Long Sun, Yong Zheng Tian","doi":"10.1177/08853282241306245","DOIUrl":"10.1177/08853282241306245","url":null,"abstract":"<p><p>The Diels-Alder reaction, a classical (4+2) cycloaddition process, holds significant standing within the realms of organic synthesis and polymer chemistry, frequently employed in areas such as pharmaceutical production and material science. Recently, hydrogels constructed via Diels-Alder reactions have garnered considerable attention from researchers. This review aims to summarize the advancements in utilizing the Diels-Alder reaction for hydrogel synthesis, exploring its impact on structural design, functionalization, and application domains. Initially, the fundamental principles of the Diels-Alder reaction are introduced alongside an examination of its benefits and characteristics in hydrogel fabrication. Subsequently, applications of Diels-Alder-generated hydrogels in biomedicine, smart responsive materials, drug delivery systems, among other fields, are comprehensively reviewed. Challenges and limitations encountered during hydrogel synthesis using this reaction are also discussed. Finally, prospective research directions and future prospects of Diels-Alder reactions in hydrogel synthesis are contemplated.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"828-839"},"PeriodicalIF":2.3,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142818030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信