Multifunctional electrospinning periosteum: Development status and prospect.

IF 2.3 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Jinli Zhu, Meifeng Li, Shuoshuo Yang, Yang Zou, Yonggang Lv
{"title":"Multifunctional electrospinning periosteum: Development status and prospect.","authors":"Jinli Zhu, Meifeng Li, Shuoshuo Yang, Yang Zou, Yonggang Lv","doi":"10.1177/08853282251315186","DOIUrl":null,"url":null,"abstract":"<p><p>In the repair of large bone defects, loss of the periosteum can result in diminished osteoinductive activity, nonunion, and incomplete regeneration of the bone structure, ultimately compromising the efficiency of bone regeneration. Therefore, the research and development of tissue-engineered periosteum which can replace the periosteum function has become the focus of current research. The functionalized electrospinning periosteum is expected to mimic the natural periosteum and enhance bone repair processes more effectively. This review explores the construction strategies for functionalized electrospun periosteum from the following perspectives: ⅰ) bioactive factor modification (bone morphogenetic protein-2 (BMP-2), vascular endothelial growth factor (VEGF) etc.), ⅱ) inorganic compound modification, ⅲ) drug modification, ⅳ) artificial periosteum in response to physical stimuli. Furthermore, the construction of artificial periosteum through electrospinning, in conjunction with other strategies, is also analyzed. Finally, the current challenges and prospects for the development of electrospinning periosteum are also discussed.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"8853282251315186"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/08853282251315186","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In the repair of large bone defects, loss of the periosteum can result in diminished osteoinductive activity, nonunion, and incomplete regeneration of the bone structure, ultimately compromising the efficiency of bone regeneration. Therefore, the research and development of tissue-engineered periosteum which can replace the periosteum function has become the focus of current research. The functionalized electrospinning periosteum is expected to mimic the natural periosteum and enhance bone repair processes more effectively. This review explores the construction strategies for functionalized electrospun periosteum from the following perspectives: ⅰ) bioactive factor modification (bone morphogenetic protein-2 (BMP-2), vascular endothelial growth factor (VEGF) etc.), ⅱ) inorganic compound modification, ⅲ) drug modification, ⅳ) artificial periosteum in response to physical stimuli. Furthermore, the construction of artificial periosteum through electrospinning, in conjunction with other strategies, is also analyzed. Finally, the current challenges and prospects for the development of electrospinning periosteum are also discussed.

多功能静电纺丝骨膜:发展现状与展望。
在修复大面积骨缺损时,骨膜丢失可导致骨诱导活性降低、骨不愈合和骨结构再生不完全,最终影响骨再生的效率。因此,研究和开发可替代骨膜功能的组织工程骨膜已成为当前研究的热点。功能化的静电纺丝骨膜有望模拟天然骨膜,更有效地促进骨修复过程。本文从生物活性因子修饰(骨形态发生蛋白-2 (BMP-2)、血管内皮生长因子(VEGF)等)、无机化合物修饰、药物修饰、人工骨膜响应物理刺激等方面探讨了功能化电纺膜的构建策略。此外,还分析了静电纺丝法构建人工骨膜的方法,并与其他方法相结合。最后,对静电纺丝骨膜目前面临的挑战和发展前景进行了讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biomaterials Applications
Journal of Biomaterials Applications 工程技术-材料科学:生物材料
CiteScore
5.10
自引率
3.40%
发文量
144
审稿时长
1.5 months
期刊介绍: The Journal of Biomaterials Applications is a fully peer reviewed international journal that publishes original research and review articles that emphasize the development, manufacture and clinical applications of biomaterials. Peer-reviewed articles by biomedical specialists from around the world cover: New developments in biomaterials, R&D, properties and performance, evaluation and applications Applications in biomedical materials and devices - from sutures and wound dressings to biosensors and cardiovascular devices Current findings in biological compatibility/incompatibility of biomaterials The Journal of Biomaterials Applications publishes original articles that emphasize the development, manufacture and clinical applications of biomaterials. Biomaterials continue to be one of the most rapidly growing areas of research in plastics today and certainly one of the biggest technical challenges, since biomaterial performance is dependent on polymer compatibility with the aggressive biological environment. The Journal cuts across disciplines and focuses on medical research and topics that present the broadest view of practical applications of biomaterials in actual clinical use. The Journal of Biomaterial Applications is devoted to new and emerging biomaterials technologies, particularly focusing on the many applications which are under development at industrial biomedical and polymer research facilities, as well as the ongoing activities in academic, medical and applied clinical uses of devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信