Chao Xu, Yuanmin Pei, Yanli Wang, Wenpeng Li, Liu Yang, Aimei Chai, Ying Wang, Wenrong Fan, Huiquan Tan
{"title":"Progress in the application of auto-concentrated growth factor (CGF) in wound repair.","authors":"Chao Xu, Yuanmin Pei, Yanli Wang, Wenpeng Li, Liu Yang, Aimei Chai, Ying Wang, Wenrong Fan, Huiquan Tan","doi":"10.1177/08853282241305362","DOIUrl":"10.1177/08853282241305362","url":null,"abstract":"<p><p>Auto-concentrated growth factor (CGF) constitutes the latest generation of plasma extract, and has high concentrations of growth factors and white blood cells. Due to the continuous variable speed centrifugation used during preparation, the tensile strength of the fibrin is also higher. CGF preparation does not involve the use of animal serum, minimizing the risk of infection and immune rejection. Therefore, it has wide potential applications in various fields of regenerative medicine. This paper summarizes the history behind CGF development, reviews the clinical applications and research progress concerning single CGF therapy and CGF used in combination with other treatments in multiple wound repair, and summarizes its potential value as therapeutic agent. Finally, some constructive suggestions and research perspectives for the application of CGF in wound healing are put forward. The available evidence indicates that CGF can promote the healing of chronic refractory wounds and acute wound, promote the growth of granulation, accelerate the speed and improve the quality of wound healing, reduce scar formation, minimize the need for repeated wound dressing, and ameliorate the pain experienced by patients.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"819-827"},"PeriodicalIF":2.3,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142794712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Antibacterial nonwoven materials in medicine and healthcare.","authors":"Lijuan Sun, Shixin Jin, Yan Feng, Yanling Liu","doi":"10.1177/08853282241297872","DOIUrl":"10.1177/08853282241297872","url":null,"abstract":"<p><p>Bacterial infection has always been a severe challenge for mankind. The use of antibacterial nonwoven materials provides a lot of convenience in daily life and clinical practice grammar revision, it has become an important solution to avoid bacterial infection in clinical and daily life. This review systematically examines the spin bonding, melt blown, hydroneedling and electrospinning methods of nonwoven fabrication materials, and summarizes the antibacterial nonwoven materials fabrication methods. Finally, the review discusses the applications of antibacterial nonwoven materials for medical protection, external medical and healthcare, external circulation medical care implantable medical and healthcare and intelligent protection and detection. This comprehensive overview aims to provide valuable insights for the advancement of antibacterial nonwoven materials in the domain of medicine and health care. In the future, antibacterial nonwoven materials are expected to evolve towards biodegradability, composite materials, functionalization, minimally invasive techniques, diversification, and intelligence, thereby holding immense potential in healthcare.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"671-695"},"PeriodicalIF":2.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142590676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Monoclonal antibodies against jellyfish collagen.","authors":"Keiko Momma, Takeyuki Shimizu, Takahiro Hayashi, Yuki Hirakawa, Masataka Kuroda, Masayuki Oda","doi":"10.1177/08853282241298354","DOIUrl":"10.1177/08853282241298354","url":null,"abstract":"<p><p>Collagens are abundant structural proteins found in both mammalian and marine species, and attractive biomaterials used in various fields. Jellyfish collagen-based products have become increasingly popular because of their clinically proven health benefits such as the effects of skin wound healing and immune stimulation. To develop detection tools for jellyfish collagen, we generated four monoclonal antibodies, MCOL1, 2, 3, and 4, by immunizing mice with moon jellyfish collagen. The nucleotide and amino acid sequences of the variable regions of the monoclonal antibodies were determined. The antibody-binding kinetics toward collagens from moon jellyfish were evaluated using a surface plasmon resonance (SPR) biosensor, and the binding specificity was evaluated in comparison with binding to collagens from edible jellyfish, fish scales, and pig and cow skins. MCOL1, 3, and 4 specifically bound to moon jellyfish collagen, whereas MCOL2 bound to both moon and edible jellyfish collagens. Considering the results showing that the SPR responses of MCOL2 binding were greater than those seen with the other antibodies, MCOL2 could recognize the common and repetitive sequences of the two jellyfish collagens. Therefore, this monoclonal antibody will be most applicable for detecting jellyfish collagen.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"807-815"},"PeriodicalIF":2.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142692919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A nanofibrous polycaprolactone/collagen neural guidance channel filled with sciatic allogeneic schwann cells and platelet-rich plasma for sciatic nerve repair.","authors":"Wenfeng Chen, Chenxiao Zheng","doi":"10.1177/08853282241297446","DOIUrl":"10.1177/08853282241297446","url":null,"abstract":"<p><p>Sciatic nerve damage, a common condition affecting approximately 2.8% of the US population, can lead to significant disability due to impaired nerve signal transmission, resulting in loss of sensation and motor function in the lower extremities. In this study, a neural guidance channel was developed by rolling a nanofibrous scaffold produced via electrospinning. The scaffold's microstructure, biocompatibility, biodegradation rate, porosity, mechanical properties, and hemocompatibility were evaluated. Platelet-rich plasma (PRP) activated with 30,000 allogeneic Schwann cells (SCs) was injected into the lumen of the channels following implantation into a rat model of sciatic nerve injury. Recovery of motor function, sensory function, and muscle re-innervation was assessed using the sciatic function index (SFI), hot plate latency time, and gastrocnemius muscle wet weight loss. Results showed mean hot plate latency times of Autograft: 7.03, PCL/collagen scaffolds loaded with PRP and SCs (PCLCOLPRPSCs): 8.34, polymer-only scaffolds (PCLCOL): 10.66, and untreated animals (Negative Control): 12.00. The mean SFI values at week eight were Autograft: -49.30, PCLCOLPRPSCs: -64.29, PCLCOL: -75.62, and Negative Control: -77.14. The PCLCOLPRPSCs group showed a more negative SFI compared to the Autograft group but performed better than both the PCLCOL and Negative Control groups. These findings suggest that the developed strategy enhanced sensory and functional recovery compared to the negative control and polymer-only scaffold groups.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"797-806"},"PeriodicalIF":2.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142583319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuchang Qin, Yuanyuan Xu, Fuli Lin, Yinwei Qiu, Yujie Luo, Xuan Lv, Tianyu Liu, Yongsheng Li, Zhiyong Liu, Shengchao Yang
{"title":"Reactive oxygen species-responsive nano gel as a carrier, combined with photothermal therapy and photodynamic therapy for the treatment of brucellosis.","authors":"Yuchang Qin, Yuanyuan Xu, Fuli Lin, Yinwei Qiu, Yujie Luo, Xuan Lv, Tianyu Liu, Yongsheng Li, Zhiyong Liu, Shengchao Yang","doi":"10.1177/08853282241279340","DOIUrl":"10.1177/08853282241279340","url":null,"abstract":"<p><p>Brucellosis is an intracellular infectious disease that is primarily treated with antibacterial therapy. However, most antibacterial drugs struggle to penetrate the cell membrane and may be excluded or inactivated within the cell. In a recent study, researchers developed a nanogel coated with polydopamine (PDA) that responds to reactive oxygen species (ROS) and has enhanced adhesion properties. This nanogel encapsulates photosensitized zinc phthalocyanine (ZnPc) and an antibacterial drug, and is further modified with folic acid (FA) for active targeting. The resulting ROS-responsive nanogel, termed PDA@PMAA@ZnPc@DH-FA, can reach temperatures up to 50°C under near-infrared light, leading to a 72.1% improvement in drug release through increased ROS production. Cell staining confirmed a cell survival rate above 75%, with a low hemolysis rate of only 4.633%, indicating excellent biocompatibility. Furthermore, the study's results showed that the nanogel exhibited stronger killing effects against Brucella compared to administering the drug alone. Under near-infrared irradiation, the nanogel achieved a bacteriostatic rate of 99.8%. The combined approach of photothermal therapy and photodynamic therapy offers valuable insights for treating Brucella.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"748-761"},"PeriodicalIF":2.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142500915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Inhibitory effect of RGD peptide hydrogel on inflammation and angiogenesis in vitro.","authors":"Binlin Chen, Licheng Liang, Dadong Jia, Mian Qin, Liye He, Shuai Liu, Yao Lv, Ruping Jiang, Liang Liang","doi":"10.1177/08853282241296520","DOIUrl":"10.1177/08853282241296520","url":null,"abstract":"<p><p>Inflammatory reaction and neovascularization are crucial physiological processes that occur during postoperative wound healing. However, excessive inflammatory response and uncontrolled angiogenesis lead to scar formation, which severely limits the success rate of glaucoma filtration surgery. Peptide hydrogels were well-established to possess good biocompatibility, inherent biodegradability, extracellular matrix analog property, and high drug loading efficiency. Herein, we examined the potential of Arg-Gly-Asp (RGD) peptide hydrogel to inhibit inflammation and angiogenesis in vitro experiments. RGD peptide hydrogel exhibited significant inhibitory effects on the inflammatory response by ELISA and western blot and considerable prohibitive effects on neovascularization via inhibiting the proliferation and migration of vascular endothelial cells. In this study, we found a novel biomaterial, RGD peptide hydrogel, which has a certain anti-cell proliferation and anti-scarring effect in vitro experiments.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"723-733"},"PeriodicalIF":2.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142568393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bing Shao, Yang Fu, Bo Li, Siming Huo, Jiayu Du, Xuliang Zhang, Xin Yin, Yanfei Li, Zheng Cao, Miao Song
{"title":"Icariin-loaded chitosan/β-glycerophosphate thermosensitive hydrogel enhanced infection control and bone regeneration in canine with infectious bone defects.","authors":"Bing Shao, Yang Fu, Bo Li, Siming Huo, Jiayu Du, Xuliang Zhang, Xin Yin, Yanfei Li, Zheng Cao, Miao Song","doi":"10.1177/08853282241288323","DOIUrl":"10.1177/08853282241288323","url":null,"abstract":"<p><p>Faced with infectious bone defects, the development of a thermosensitive hydrogel containing icariin (ICA) represents a promising therapeutic strategy targeting infection control and bone regeneration. In this study, we prepared and evaluated the physicochemical properties, in vitro and in vivo drug release, antimicrobial activity, anti-inflammatory properties, and bone repair effects of ICA/Chitosan/β-Glycerophosphate (ICA/CTS/β-GP) thermosensitive hydrogel. Our findings demonstrate that the ICA/CTS/β-GP thermosensitive hydrogel undergoes a liquid-to-gel transition at body temperature, which is crucial for maintaining local drug release at the defect site. Additionally, the hydrogel exhibited sustained release of ICA over 28 days, showing high antimicrobial activity against <i>Staphylococcus aureus</i> and good biocompatibility in blood compatibility tests. In a canine model of infectious bone defects, the ICA/CTS/β-GP thermosensitive hydrogel showed effective infection control and modulated inflammation, vascular formation, and bone factor expression, while also activating the Wnt/β-catenin signaling pathway. In conclusion, the ICA/CTS/β-GP thermosensitive hydrogel could control infection and repair bone tissue. Its antimicrobial and osteogenic properties provide hope for its clinical application.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"696-713"},"PeriodicalIF":2.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142466202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effects of human amniotic membrane on the angiogenesis and healing of ischemic wounds in a rat model.","authors":"Masato Sato, Kazuaki Tokodai, Kaoru Okada, Hiroyuki Ogasawara, Miyako Tanaka, Tetsuro Hoshiai, Masatoshi Saito, Hirofumi Sugawara, Daijirou Akamatsu, Michiaki Unno, Masafumi Goto, Takashi Kamei","doi":"10.1177/08853282241289919","DOIUrl":"10.1177/08853282241289919","url":null,"abstract":"<p><p>Although the human amniotic membrane (hAM) has been demonstrated to promote angiogenesis, its efficacy in healing ischemic wounds remains unknown. Therefore, the current study aimed to evaluate the potential of hAM as a dressing for treating ischemic wounds. The inferior abdominal wall arteries and veins of male rats were divided, and an ischemic wound was created on each side of the abdominal wall. Of the two ischemic wounds created, only one was covered with hAM, and its wound healing effect was determined by measuring the wound area. Angiogenesis was assessed by measuring microvessel density (MVD). On day 5, the mean wound area changed from 400 mm<sup>2</sup> to 335.4 (260-450) mm<sup>2</sup> in the hAM group and to 459 (306-570) mm<sup>2</sup> in the control group (<i>p</i> = 0.0051). MVD was 19.0 (10.4-24.6) in the hAM group and 15.1 (10.6-20.8) in the control group (<i>p</i> = 0.0026). No significant differences in local pro- and anti-inflammatory cytokine levels were observed between the two groups. Histological examination revealed no rejection of the transplanted hAM. Therefore, the hAM may serve as a novel wound dressing that can promote angiogenesis and healing in ischemic wounds.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"789-796"},"PeriodicalIF":2.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142371948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Influence of scaffold geometry on the degradation rate of 3D printed polylactic acid bone scaffold.","authors":"Nazanin Khaki, Emad Sharifi, Mehran Solati-Hashjin, Nabiolah Abolfathi","doi":"10.1177/08853282241297767","DOIUrl":"10.1177/08853282241297767","url":null,"abstract":"<p><p>Fabricating scaffolds using three-dimensional (3D) printing is an emerging approach in tissue engineering (TE), where filaments with a controlled arrangement are printed. Using fused deposition modeling in bone replacement enables the simulation of bone structure. However, the microenvironment created by the scaffold must meet specific requirements. These requirements aim to create an environment that promotes adhesion, proliferation, differentiation, and cell migration. One of the challenges in creating polylactic acid scaffolds is controlling the degradation rate to match the target tissue. This study investigates the degradation of scaffolds with different geometries and the relationship between scaffolds' geometry and degradation rate. These scaffolds are made of polylactic acid and prepared using 3D printing. The lattice geometry was exposed to acidic media with varying pH levels for 1 month, and pH2 was selected for all geometries for further investigation. The five selected geometries were then immersed in the desired acid for 2 months, and measurements were taken for wet weight, dry weight, morphology, molecular weight, and crystallinity during degradation. The results showed that the hexagonal sample had a 1.5% increase in wet weight, and the gyroid sample had a 1.2% increase, indicating that the wavy shapes had a higher fluid-holding capacity. The degradation analysis indicated that the hexagonal geometry had accelerated degradation compared to the other geometries. Based on these findings, it can be concluded that filament separation not only results in rapid cooling and prevents the recovery of the crystalline arrangement but also increases the surface area to volume ratio, allowing for more acid penetration and faster degradation. Finally, mechanical properties and in vitro evaluation were assessed for three selected geometries. On the 60th day, the hexagonal scaffold had the highest elastic modulus value of 105 ± 0.45 MPa, while the gyroid scaffold had the lowest value of 58.8 ± 0.40 MPa. The lattice scaffold had the highest amount of cell attachment, with 210.88 ± 0.35 cells surviving after 24 hours and 94.01 ± 0.18 cells surviving after 72 hours. These high viability rates indicate that the three scaffolds with the selected geometries are suitable for promoting cell growth.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"734-747"},"PeriodicalIF":2.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142778967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sustainable release artifact in PLGA microspheres for prolonged local aesthetics in postoperative pain management.","authors":"Chong Chen, Yejun Zhao, Kaijia Tang, Honglong Ning, Xiaohua Yu, Yueliang Zhu, Qingyu Shi","doi":"10.1177/08853282241290141","DOIUrl":"10.1177/08853282241290141","url":null,"abstract":"<p><p>The challenge of effectively managing long-term pain after surgery remains a significant issue in clinical settings. Although local anesthetics are preferred for their effective pain relief and few side effects, their short-lasting effect does not fully meet the pain relief needs after surgery. Articaine, widely used for postoperative pain relief as a local anesthetic, is pharmacologically limited by its short half-life, which reduces the duration of its pain-relieving effects. To overcome this issue, this study presents a new approach using poly (lactic-co-glycolic acid) (PLGA) microspheres for controlled articaine release, aiming to extend its analgesic effect while reducing potential toxicity. The PLGA microspheres were shown to extend the release of articaine for at least 72 h in lab tests, displaying excellent biocompatibility and low toxicity. When used in a rodent model for postoperative pain, the microspheres provided significantly prolonged pain relief, effectively reducing pain for up to 3 days post-surgery, without causing inflammation or tissue damage for over 72 h after being administered. The extended release and high safety profile of these PLGA microspheres highlight their promise as a new method for delivering local anesthetics, opening up new possibilities for pain management in the future.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"714-722"},"PeriodicalIF":2.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142390801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}