{"title":"RGD 肽水凝胶对体外炎症和血管生成的抑制作用。","authors":"Binlin Chen, Licheng Liang, Dadong Jia, Mian Qin, Liye He, Shuai Liu, Yao Lv, Ruping Jiang, Liang Liang","doi":"10.1177/08853282241296520","DOIUrl":null,"url":null,"abstract":"<p><p>Inflammatory reaction and neovascularization are crucial physiological processes that occur during postoperative wound healing. However, excessive inflammatory response and uncontrolled angiogenesis lead to scar formation, which severely limits the success rate of glaucoma filtration surgery. Peptide hydrogels were well-established to possess good biocompatibility, inherent biodegradability, extracellular matrix analog property, and high drug loading efficiency. Herein, we examined the potential of Arg-Gly-Asp (RGD) peptide hydrogel to inhibit inflammation and angiogenesis in vitro experiments. RGD peptide hydrogel exhibited significant inhibitory effects on the inflammatory response by ELISA and western blot and considerable prohibitive effects on neovascularization via inhibiting the proliferation and migration of vascular endothelial cells. In this study, we found a novel biomaterial, RGD peptide hydrogel, which has a certain anti-cell proliferation and anti-scarring effect in vitro experiments.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"8853282241296520"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inhibitory effect of RGD peptide hydrogel on inflammation and angiogenesis in vitro.\",\"authors\":\"Binlin Chen, Licheng Liang, Dadong Jia, Mian Qin, Liye He, Shuai Liu, Yao Lv, Ruping Jiang, Liang Liang\",\"doi\":\"10.1177/08853282241296520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Inflammatory reaction and neovascularization are crucial physiological processes that occur during postoperative wound healing. However, excessive inflammatory response and uncontrolled angiogenesis lead to scar formation, which severely limits the success rate of glaucoma filtration surgery. Peptide hydrogels were well-established to possess good biocompatibility, inherent biodegradability, extracellular matrix analog property, and high drug loading efficiency. Herein, we examined the potential of Arg-Gly-Asp (RGD) peptide hydrogel to inhibit inflammation and angiogenesis in vitro experiments. RGD peptide hydrogel exhibited significant inhibitory effects on the inflammatory response by ELISA and western blot and considerable prohibitive effects on neovascularization via inhibiting the proliferation and migration of vascular endothelial cells. In this study, we found a novel biomaterial, RGD peptide hydrogel, which has a certain anti-cell proliferation and anti-scarring effect in vitro experiments.</p>\",\"PeriodicalId\":15138,\"journal\":{\"name\":\"Journal of Biomaterials Applications\",\"volume\":\" \",\"pages\":\"8853282241296520\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomaterials Applications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/08853282241296520\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/08853282241296520","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Inhibitory effect of RGD peptide hydrogel on inflammation and angiogenesis in vitro.
Inflammatory reaction and neovascularization are crucial physiological processes that occur during postoperative wound healing. However, excessive inflammatory response and uncontrolled angiogenesis lead to scar formation, which severely limits the success rate of glaucoma filtration surgery. Peptide hydrogels were well-established to possess good biocompatibility, inherent biodegradability, extracellular matrix analog property, and high drug loading efficiency. Herein, we examined the potential of Arg-Gly-Asp (RGD) peptide hydrogel to inhibit inflammation and angiogenesis in vitro experiments. RGD peptide hydrogel exhibited significant inhibitory effects on the inflammatory response by ELISA and western blot and considerable prohibitive effects on neovascularization via inhibiting the proliferation and migration of vascular endothelial cells. In this study, we found a novel biomaterial, RGD peptide hydrogel, which has a certain anti-cell proliferation and anti-scarring effect in vitro experiments.
期刊介绍:
The Journal of Biomaterials Applications is a fully peer reviewed international journal that publishes original research and review articles that emphasize the development, manufacture and clinical applications of biomaterials.
Peer-reviewed articles by biomedical specialists from around the world cover:
New developments in biomaterials, R&D, properties and performance, evaluation and applications
Applications in biomedical materials and devices - from sutures and wound dressings to biosensors and cardiovascular devices
Current findings in biological compatibility/incompatibility of biomaterials
The Journal of Biomaterials Applications publishes original articles that emphasize the development, manufacture and clinical applications of biomaterials. Biomaterials continue to be one of the most rapidly growing areas of research in plastics today and certainly one of the biggest technical challenges, since biomaterial performance is dependent on polymer compatibility with the aggressive biological environment. The Journal cuts across disciplines and focuses on medical research and topics that present the broadest view of practical applications of biomaterials in actual clinical use.
The Journal of Biomaterial Applications is devoted to new and emerging biomaterials technologies, particularly focusing on the many applications which are under development at industrial biomedical and polymer research facilities, as well as the ongoing activities in academic, medical and applied clinical uses of devices.