用于修复坐骨神经的纳米纤维聚己内酯/胶原蛋白神经引导通道,其中填充了坐骨神经异体施旺细胞和富含血小板的血浆。

IF 2.3 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Wenfeng Chen, Chenxiao Zheng
{"title":"用于修复坐骨神经的纳米纤维聚己内酯/胶原蛋白神经引导通道,其中填充了坐骨神经异体施旺细胞和富含血小板的血浆。","authors":"Wenfeng Chen, Chenxiao Zheng","doi":"10.1177/08853282241297446","DOIUrl":null,"url":null,"abstract":"<p><p>Sciatic nerve damage, a common condition affecting approximately 2.8% of the US population, can lead to significant disability due to impaired nerve signal transmission, resulting in loss of sensation and motor function in the lower extremities. In this study, a neural guidance channel was developed by rolling a nanofibrous scaffold produced via electrospinning. The scaffold's microstructure, biocompatibility, biodegradation rate, porosity, mechanical properties, and hemocompatibility were evaluated. Platelet-rich plasma (PRP) activated with 30,000 allogeneic Schwann cells (SCs) was injected into the lumen of the channels following implantation into a rat model of sciatic nerve injury. Recovery of motor function, sensory function, and muscle re-innervation was assessed using the sciatic function index (SFI), hot plate latency time, and gastrocnemius muscle wet weight loss. Results showed mean hot plate latency times of Autograft: 7.03, PCL/collagen scaffolds loaded with PRP and SCs (PCLCOLPRPSCs): 8.34, polymer-only scaffolds (PCLCOL): 10.66, and untreated animals (Negative Control): 12.00. The mean SFI values at week eight were Autograft: -49.30, PCLCOLPRPSCs: -64.29, PCLCOL: -75.62, and Negative Control: -77.14. The PCLCOLPRPSCs group showed a more negative SFI compared to the Autograft group but performed better than both the PCLCOL and Negative Control groups. These findings suggest that the developed strategy enhanced sensory and functional recovery compared to the negative control and polymer-only scaffold groups.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"8853282241297446"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A nanofibrous polycaprolactone/collagen neural guidance channel filled with sciatic allogeneic schwann cells and platelet-rich plasma for sciatic nerve repair.\",\"authors\":\"Wenfeng Chen, Chenxiao Zheng\",\"doi\":\"10.1177/08853282241297446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sciatic nerve damage, a common condition affecting approximately 2.8% of the US population, can lead to significant disability due to impaired nerve signal transmission, resulting in loss of sensation and motor function in the lower extremities. In this study, a neural guidance channel was developed by rolling a nanofibrous scaffold produced via electrospinning. The scaffold's microstructure, biocompatibility, biodegradation rate, porosity, mechanical properties, and hemocompatibility were evaluated. Platelet-rich plasma (PRP) activated with 30,000 allogeneic Schwann cells (SCs) was injected into the lumen of the channels following implantation into a rat model of sciatic nerve injury. Recovery of motor function, sensory function, and muscle re-innervation was assessed using the sciatic function index (SFI), hot plate latency time, and gastrocnemius muscle wet weight loss. Results showed mean hot plate latency times of Autograft: 7.03, PCL/collagen scaffolds loaded with PRP and SCs (PCLCOLPRPSCs): 8.34, polymer-only scaffolds (PCLCOL): 10.66, and untreated animals (Negative Control): 12.00. The mean SFI values at week eight were Autograft: -49.30, PCLCOLPRPSCs: -64.29, PCLCOL: -75.62, and Negative Control: -77.14. The PCLCOLPRPSCs group showed a more negative SFI compared to the Autograft group but performed better than both the PCLCOL and Negative Control groups. These findings suggest that the developed strategy enhanced sensory and functional recovery compared to the negative control and polymer-only scaffold groups.</p>\",\"PeriodicalId\":15138,\"journal\":{\"name\":\"Journal of Biomaterials Applications\",\"volume\":\" \",\"pages\":\"8853282241297446\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomaterials Applications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/08853282241297446\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/08853282241297446","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

坐骨神经损伤是一种常见疾病,约占美国人口的 2.8%,由于神经信号传输受损,可导致下肢失去知觉和运动功能,从而导致严重残疾。在这项研究中,通过滚动电纺丝技术生产的纳米纤维支架,开发出了一种神经引导通道。研究人员对支架的微观结构、生物相容性、生物降解率、孔隙率、机械性能和血液相容性进行了评估。将富含 30,000 个异体许旺细胞(SCs)的血小板血浆(PRP)活化后注入通道内腔,然后植入坐骨神经损伤大鼠模型。通过坐骨神经功能指数(SFI)、热板潜伏时间和腓肠肌湿重损失来评估运动功能、感觉功能和肌肉再神经支配的恢复情况。结果显示,自体移植动物的平均热板潜伏时间为 7.03,含有 PRP 和 SCs 的 PCL/胶原支架(PCLCOLPRPSCs)为 8.34,纯聚合物支架(PCLCOL)为 10.66,而未经处理的动物则为 10.66:10.66,未经处理的动物(阴性对照组):12.00:12.00.第八周的平均 SFI 值分别为:自体移植:-49.30、PCLCOLPRPSCs:-64.29、PCLCOL:-75.62 和阴性对照:-77.14。与自体移植组相比,PCLCOLPRPSCs 组的 SFI 为负值,但表现优于 PCLCOL 组和阴性对照组。这些研究结果表明,与阴性对照组和纯聚合物支架组相比,所开发的策略增强了感觉和功能的恢复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A nanofibrous polycaprolactone/collagen neural guidance channel filled with sciatic allogeneic schwann cells and platelet-rich plasma for sciatic nerve repair.

Sciatic nerve damage, a common condition affecting approximately 2.8% of the US population, can lead to significant disability due to impaired nerve signal transmission, resulting in loss of sensation and motor function in the lower extremities. In this study, a neural guidance channel was developed by rolling a nanofibrous scaffold produced via electrospinning. The scaffold's microstructure, biocompatibility, biodegradation rate, porosity, mechanical properties, and hemocompatibility were evaluated. Platelet-rich plasma (PRP) activated with 30,000 allogeneic Schwann cells (SCs) was injected into the lumen of the channels following implantation into a rat model of sciatic nerve injury. Recovery of motor function, sensory function, and muscle re-innervation was assessed using the sciatic function index (SFI), hot plate latency time, and gastrocnemius muscle wet weight loss. Results showed mean hot plate latency times of Autograft: 7.03, PCL/collagen scaffolds loaded with PRP and SCs (PCLCOLPRPSCs): 8.34, polymer-only scaffolds (PCLCOL): 10.66, and untreated animals (Negative Control): 12.00. The mean SFI values at week eight were Autograft: -49.30, PCLCOLPRPSCs: -64.29, PCLCOL: -75.62, and Negative Control: -77.14. The PCLCOLPRPSCs group showed a more negative SFI compared to the Autograft group but performed better than both the PCLCOL and Negative Control groups. These findings suggest that the developed strategy enhanced sensory and functional recovery compared to the negative control and polymer-only scaffold groups.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biomaterials Applications
Journal of Biomaterials Applications 工程技术-材料科学:生物材料
CiteScore
5.10
自引率
3.40%
发文量
144
审稿时长
1.5 months
期刊介绍: The Journal of Biomaterials Applications is a fully peer reviewed international journal that publishes original research and review articles that emphasize the development, manufacture and clinical applications of biomaterials. Peer-reviewed articles by biomedical specialists from around the world cover: New developments in biomaterials, R&D, properties and performance, evaluation and applications Applications in biomedical materials and devices - from sutures and wound dressings to biosensors and cardiovascular devices Current findings in biological compatibility/incompatibility of biomaterials The Journal of Biomaterials Applications publishes original articles that emphasize the development, manufacture and clinical applications of biomaterials. Biomaterials continue to be one of the most rapidly growing areas of research in plastics today and certainly one of the biggest technical challenges, since biomaterial performance is dependent on polymer compatibility with the aggressive biological environment. The Journal cuts across disciplines and focuses on medical research and topics that present the broadest view of practical applications of biomaterials in actual clinical use. The Journal of Biomaterial Applications is devoted to new and emerging biomaterials technologies, particularly focusing on the many applications which are under development at industrial biomedical and polymer research facilities, as well as the ongoing activities in academic, medical and applied clinical uses of devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信