Reactive oxygen species-responsive nano gel as a carrier, combined with photothermal therapy and photodynamic therapy for the treatment of brucellosis.

IF 2.3 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Yuchang Qin, Yuanyuan Xu, Fuli Lin, Yinwei Qiu, Yujie Luo, Xuan Lv, Tianyu Liu, Yongsheng Li, Zhiyong Liu, Shengchao Yang
{"title":"Reactive oxygen species-responsive nano gel as a carrier, combined with photothermal therapy and photodynamic therapy for the treatment of brucellosis.","authors":"Yuchang Qin, Yuanyuan Xu, Fuli Lin, Yinwei Qiu, Yujie Luo, Xuan Lv, Tianyu Liu, Yongsheng Li, Zhiyong Liu, Shengchao Yang","doi":"10.1177/08853282241279340","DOIUrl":null,"url":null,"abstract":"<p><p>Brucellosis is an intracellular infectious disease that is primarily treated with antibacterial therapy. However, most antibacterial drugs struggle to penetrate the cell membrane and may be excluded or inactivated within the cell. In a recent study, researchers developed a nanogel coated with polydopamine (PDA) that responds to reactive oxygen species (ROS) and has enhanced adhesion properties. This nanogel encapsulates photosensitized zinc phthalocyanine (ZnPc) and an antibacterial drug, and is further modified with folic acid (FA) for active targeting. The resulting ROS-responsive nanogel, termed PDA@PMAA@ZnPc@DH-FA, can reach temperatures up to 50°C under near-infrared light, leading to a 72.1% improvement in drug release through increased ROS production. Cell staining confirmed a cell survival rate above 75%, with a low hemolysis rate of only 4.633%, indicating excellent biocompatibility. Furthermore, the study's results showed that the nanogel exhibited stronger killing effects against Brucella compared to administering the drug alone. Under near-infrared irradiation, the nanogel achieved a bacteriostatic rate of 99.8%. The combined approach of photothermal therapy and photodynamic therapy offers valuable insights for treating Brucella.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"8853282241279340"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/08853282241279340","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Brucellosis is an intracellular infectious disease that is primarily treated with antibacterial therapy. However, most antibacterial drugs struggle to penetrate the cell membrane and may be excluded or inactivated within the cell. In a recent study, researchers developed a nanogel coated with polydopamine (PDA) that responds to reactive oxygen species (ROS) and has enhanced adhesion properties. This nanogel encapsulates photosensitized zinc phthalocyanine (ZnPc) and an antibacterial drug, and is further modified with folic acid (FA) for active targeting. The resulting ROS-responsive nanogel, termed PDA@PMAA@ZnPc@DH-FA, can reach temperatures up to 50°C under near-infrared light, leading to a 72.1% improvement in drug release through increased ROS production. Cell staining confirmed a cell survival rate above 75%, with a low hemolysis rate of only 4.633%, indicating excellent biocompatibility. Furthermore, the study's results showed that the nanogel exhibited stronger killing effects against Brucella compared to administering the drug alone. Under near-infrared irradiation, the nanogel achieved a bacteriostatic rate of 99.8%. The combined approach of photothermal therapy and photodynamic therapy offers valuable insights for treating Brucella.

以活性氧反应纳米凝胶为载体,结合光热疗法和光动力疗法治疗布鲁氏菌病。
布鲁氏菌病是一种细胞内传染病,主要采用抗菌疗法进行治疗。然而,大多数抗菌药物很难穿透细胞膜,可能会在细胞内被排除或失活。在最近的一项研究中,研究人员开发出一种涂有聚多巴胺(PDA)的纳米凝胶,它能对活性氧(ROS)做出反应,并具有更强的粘附特性。这种纳米凝胶封装了光敏酞菁锌(ZnPc)和一种抗菌药物,并用叶酸(FA)进一步修饰,以实现主动靶向。由此产生的 ROS 响应型纳米凝胶被称为 PDA@PMAA@ZnPc@DH-FA,在近红外光下的温度可达 50°C,通过增加 ROS 的产生,药物释放率提高了 72.1%。细胞染色证实,细胞存活率超过 75%,溶血率低至仅 4.633%,显示出良好的生物相容性。此外,研究结果表明,与单独给药相比,纳米凝胶对布鲁氏菌具有更强的杀灭效果。在近红外照射下,纳米凝胶的抑菌率达到 99.8%。光热疗法和光动力疗法相结合的方法为治疗布鲁氏菌提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biomaterials Applications
Journal of Biomaterials Applications 工程技术-材料科学:生物材料
CiteScore
5.10
自引率
3.40%
发文量
144
审稿时长
1.5 months
期刊介绍: The Journal of Biomaterials Applications is a fully peer reviewed international journal that publishes original research and review articles that emphasize the development, manufacture and clinical applications of biomaterials. Peer-reviewed articles by biomedical specialists from around the world cover: New developments in biomaterials, R&D, properties and performance, evaluation and applications Applications in biomedical materials and devices - from sutures and wound dressings to biosensors and cardiovascular devices Current findings in biological compatibility/incompatibility of biomaterials The Journal of Biomaterials Applications publishes original articles that emphasize the development, manufacture and clinical applications of biomaterials. Biomaterials continue to be one of the most rapidly growing areas of research in plastics today and certainly one of the biggest technical challenges, since biomaterial performance is dependent on polymer compatibility with the aggressive biological environment. The Journal cuts across disciplines and focuses on medical research and topics that present the broadest view of practical applications of biomaterials in actual clinical use. The Journal of Biomaterial Applications is devoted to new and emerging biomaterials technologies, particularly focusing on the many applications which are under development at industrial biomedical and polymer research facilities, as well as the ongoing activities in academic, medical and applied clinical uses of devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信