Bhavana Raj, Harika Sapa, Shona S Shaji, Kaladhar Kamalasanan
{"title":"仿生乳质体与脂质体纳米颗粒为基础的阿司匹林注射液治疗脑卒中和心肌梗死。","authors":"Bhavana Raj, Harika Sapa, Shona S Shaji, Kaladhar Kamalasanan","doi":"10.1177/08853282241307908","DOIUrl":null,"url":null,"abstract":"<p><p>In this work, we are comparing biomimetic niosomal nanoparticles (BNNs) with biomimetic liposomal nanoparticles (BLNs) and studying their drug carrier properties. A-BNNs and A-BLNs are prepared by lipid hydration method and characterized using DLS for size and zeta potential analysis, surface morphology by SEM, structural details by TEM, crystallinity and phase change by XRD, thermodynamic properties by DSC, TGA and DTGA, drug carrier properties by entrapment efficiency, drug release studies by open-end tube method and its mechanistic assessment by fitting with various models such as zero order, first order, Higuchi and Korsmeyer-Peppas models. The A-BNNs had an average size of 157.0 ± 3.58 nm and A-BLNs had an average size of 173 ± 1.24 nm. The A-BNNs had an average zeta potential of -29.0 ± 1.11 mV and A-BLNs had an average zeta potential of -46.5 ± 1.11 mV. The A-BNNs have an average entrapment efficiency of 94 ± 0.4% and A-BLNs have an average entrapment efficiency of 98 ± 0.14%. The BNNs have an average drug release of 78.12 ± 1.57% and A-BLNs have an average release of 98.41 ± 1.87% over 24 hours. Our results show that the vesicular size dependence influences the resulting nanoparticle drug carrier properties. This is a robust demonstration of the phenomena at the nanoscale that the precursor vesicular system size dependency will be reflected in bulk-engineered nanoparticle properties. These novel nanoparticles are potential candidates for development as an injection to suppress clots in stroke and myocardial infarction.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"952-968"},"PeriodicalIF":2.3000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biomimetic niosomal versus liposomal nanoparticle-based aspirin injection for treating stroke and myocardial infarction.\",\"authors\":\"Bhavana Raj, Harika Sapa, Shona S Shaji, Kaladhar Kamalasanan\",\"doi\":\"10.1177/08853282241307908\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this work, we are comparing biomimetic niosomal nanoparticles (BNNs) with biomimetic liposomal nanoparticles (BLNs) and studying their drug carrier properties. A-BNNs and A-BLNs are prepared by lipid hydration method and characterized using DLS for size and zeta potential analysis, surface morphology by SEM, structural details by TEM, crystallinity and phase change by XRD, thermodynamic properties by DSC, TGA and DTGA, drug carrier properties by entrapment efficiency, drug release studies by open-end tube method and its mechanistic assessment by fitting with various models such as zero order, first order, Higuchi and Korsmeyer-Peppas models. The A-BNNs had an average size of 157.0 ± 3.58 nm and A-BLNs had an average size of 173 ± 1.24 nm. The A-BNNs had an average zeta potential of -29.0 ± 1.11 mV and A-BLNs had an average zeta potential of -46.5 ± 1.11 mV. The A-BNNs have an average entrapment efficiency of 94 ± 0.4% and A-BLNs have an average entrapment efficiency of 98 ± 0.14%. The BNNs have an average drug release of 78.12 ± 1.57% and A-BLNs have an average release of 98.41 ± 1.87% over 24 hours. Our results show that the vesicular size dependence influences the resulting nanoparticle drug carrier properties. This is a robust demonstration of the phenomena at the nanoscale that the precursor vesicular system size dependency will be reflected in bulk-engineered nanoparticle properties. These novel nanoparticles are potential candidates for development as an injection to suppress clots in stroke and myocardial infarction.</p>\",\"PeriodicalId\":15138,\"journal\":{\"name\":\"Journal of Biomaterials Applications\",\"volume\":\" \",\"pages\":\"952-968\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomaterials Applications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/08853282241307908\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/08853282241307908","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/17 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Biomimetic niosomal versus liposomal nanoparticle-based aspirin injection for treating stroke and myocardial infarction.
In this work, we are comparing biomimetic niosomal nanoparticles (BNNs) with biomimetic liposomal nanoparticles (BLNs) and studying their drug carrier properties. A-BNNs and A-BLNs are prepared by lipid hydration method and characterized using DLS for size and zeta potential analysis, surface morphology by SEM, structural details by TEM, crystallinity and phase change by XRD, thermodynamic properties by DSC, TGA and DTGA, drug carrier properties by entrapment efficiency, drug release studies by open-end tube method and its mechanistic assessment by fitting with various models such as zero order, first order, Higuchi and Korsmeyer-Peppas models. The A-BNNs had an average size of 157.0 ± 3.58 nm and A-BLNs had an average size of 173 ± 1.24 nm. The A-BNNs had an average zeta potential of -29.0 ± 1.11 mV and A-BLNs had an average zeta potential of -46.5 ± 1.11 mV. The A-BNNs have an average entrapment efficiency of 94 ± 0.4% and A-BLNs have an average entrapment efficiency of 98 ± 0.14%. The BNNs have an average drug release of 78.12 ± 1.57% and A-BLNs have an average release of 98.41 ± 1.87% over 24 hours. Our results show that the vesicular size dependence influences the resulting nanoparticle drug carrier properties. This is a robust demonstration of the phenomena at the nanoscale that the precursor vesicular system size dependency will be reflected in bulk-engineered nanoparticle properties. These novel nanoparticles are potential candidates for development as an injection to suppress clots in stroke and myocardial infarction.
期刊介绍:
The Journal of Biomaterials Applications is a fully peer reviewed international journal that publishes original research and review articles that emphasize the development, manufacture and clinical applications of biomaterials.
Peer-reviewed articles by biomedical specialists from around the world cover:
New developments in biomaterials, R&D, properties and performance, evaluation and applications
Applications in biomedical materials and devices - from sutures and wound dressings to biosensors and cardiovascular devices
Current findings in biological compatibility/incompatibility of biomaterials
The Journal of Biomaterials Applications publishes original articles that emphasize the development, manufacture and clinical applications of biomaterials. Biomaterials continue to be one of the most rapidly growing areas of research in plastics today and certainly one of the biggest technical challenges, since biomaterial performance is dependent on polymer compatibility with the aggressive biological environment. The Journal cuts across disciplines and focuses on medical research and topics that present the broadest view of practical applications of biomaterials in actual clinical use.
The Journal of Biomaterial Applications is devoted to new and emerging biomaterials technologies, particularly focusing on the many applications which are under development at industrial biomedical and polymer research facilities, as well as the ongoing activities in academic, medical and applied clinical uses of devices.