A novel 3D-printed silk fibroin/hydroxypropyl methyl cellulose scaffold with good biocompatibility and controllable degradation in vivo.

IF 2.5 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Nongping Zhong, Liuxue Du, Yelong Bai, Zhongchun Chen, Lihui Cai, Zhengzhong Shao, Xia Zhao
{"title":"A novel 3D-printed silk fibroin/hydroxypropyl methyl cellulose scaffold with good biocompatibility and controllable degradation <i>in vivo</i>.","authors":"Nongping Zhong, Liuxue Du, Yelong Bai, Zhongchun Chen, Lihui Cai, Zhengzhong Shao, Xia Zhao","doi":"10.1177/08853282251365812","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, novel silk (SF)-fibroin based scaffolds were fabricated via 3D printing of a thixotropic SF/hydroxypropyl methyl cellulose (HPMC) hydrogel. Two different concentrations of 3D printed SF/HPMC scaffolds (20 wt% and 30 wt%) were implanted subcutaneously in SD rats for 24 weeks to investigate <i>in vivo</i> degradation and biocompatibility. Scaffold morphology, tissue ingrowth (collagen fibers, blood vessels), and local inflammatory responses were assessed using SEM, histology (HE, Masson staining), immunohistochemistry (CD31, CD68), and RT-qPCR (IL-6, IL-1β, IL-10, TGF-β1 mRNA). Results showed that no purulent secretions were found around the two scaffolds during implantation. Collagen fibers, blood vessels and other tissues could grow into the scaffolds after implantation. The number of collagen fibers and CD31-positive vascular endothelial cells in the 20 wt% SF/HPMC scaffolds were greater than that in the 30 wt% SF/HPMC scaffolds. SEM detection showed the pore structure in the cross section of 20 wt% SF/HPMC scaffolds began to collapse at 12 weeks; No obvious collapse of the pore structure was found in the cross section of the 30 wt% SF/HPMC scaffolds during the period of implantation. Mechanical properties test showed that the compressive modulus of 20 wt% SF/HPMC scaffolds decreased significantly at 12 weeks and was lower than that at the pre-implantation. The mechanical properties of the 30 wt% SF/HPMC scaffolds remained relatively stable, and the mechanical properties were slightly higher at 24 weeks than that before implantation. Both scaffolds did not cause severe inflammatory reactions during the degradation process, and their structures could allow the growth of blood vessels, collagen fibers and other tissues. The degradability was correlated to the concentrations of SF/HPMC and insights gained in this study can serve as a guide to match desired degradation behavior with specific applications for the 3D printed SF/HPMC scaffold.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"8853282251365812"},"PeriodicalIF":2.5000,"publicationDate":"2025-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/08853282251365812","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, novel silk (SF)-fibroin based scaffolds were fabricated via 3D printing of a thixotropic SF/hydroxypropyl methyl cellulose (HPMC) hydrogel. Two different concentrations of 3D printed SF/HPMC scaffolds (20 wt% and 30 wt%) were implanted subcutaneously in SD rats for 24 weeks to investigate in vivo degradation and biocompatibility. Scaffold morphology, tissue ingrowth (collagen fibers, blood vessels), and local inflammatory responses were assessed using SEM, histology (HE, Masson staining), immunohistochemistry (CD31, CD68), and RT-qPCR (IL-6, IL-1β, IL-10, TGF-β1 mRNA). Results showed that no purulent secretions were found around the two scaffolds during implantation. Collagen fibers, blood vessels and other tissues could grow into the scaffolds after implantation. The number of collagen fibers and CD31-positive vascular endothelial cells in the 20 wt% SF/HPMC scaffolds were greater than that in the 30 wt% SF/HPMC scaffolds. SEM detection showed the pore structure in the cross section of 20 wt% SF/HPMC scaffolds began to collapse at 12 weeks; No obvious collapse of the pore structure was found in the cross section of the 30 wt% SF/HPMC scaffolds during the period of implantation. Mechanical properties test showed that the compressive modulus of 20 wt% SF/HPMC scaffolds decreased significantly at 12 weeks and was lower than that at the pre-implantation. The mechanical properties of the 30 wt% SF/HPMC scaffolds remained relatively stable, and the mechanical properties were slightly higher at 24 weeks than that before implantation. Both scaffolds did not cause severe inflammatory reactions during the degradation process, and their structures could allow the growth of blood vessels, collagen fibers and other tissues. The degradability was correlated to the concentrations of SF/HPMC and insights gained in this study can serve as a guide to match desired degradation behavior with specific applications for the 3D printed SF/HPMC scaffold.

一种新型的3d打印丝素/羟丙基甲基纤维素支架,具有良好的生物相容性和体内降解可控。
在这项研究中,通过3D打印触变性SF/羟丙基甲基纤维素(HPMC)水凝胶,制备了新型丝(SF)-丝蛋白支架。将两种不同浓度的3D打印SF/HPMC支架(20 wt%和30 wt%)植入SD大鼠皮下24周,研究其体内降解和生物相容性。采用扫描电镜(SEM)、组织学(HE、Masson染色)、免疫组织化学(CD31、CD68)和RT-qPCR (IL-6、IL-1β、IL-10、TGF-β 1mrna)评估支架形态、组织长入(胶原纤维、血管)和局部炎症反应。结果表明,植入过程中两种支架周围均未见化脓性分泌物。植入支架后,胶原纤维、血管等组织可以在支架内生长。20 wt% SF/HPMC支架中胶原纤维和cd31阳性血管内皮细胞的数量大于30 wt% SF/HPMC支架。SEM检测显示,20 wt% SF/HPMC支架的横截面孔隙结构在12周时开始崩塌;30 wt% SF/HPMC支架在植入过程中,其横截面孔隙结构未见明显塌陷。力学性能测试表明,20 wt% SF/HPMC支架的压缩模量在12周时显著下降,且低于植入前。30 wt% SF/HPMC支架力学性能保持相对稳定,24周时力学性能略高于植入前。这两种支架在降解过程中都没有引起严重的炎症反应,其结构可以使血管、胶原纤维等组织生长。可降解性与SF/HPMC的浓度相关,本研究获得的见解可以作为指导,将所需的降解行为与3D打印SF/HPMC支架的特定应用相匹配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biomaterials Applications
Journal of Biomaterials Applications 工程技术-材料科学:生物材料
CiteScore
5.10
自引率
3.40%
发文量
144
审稿时长
1.5 months
期刊介绍: The Journal of Biomaterials Applications is a fully peer reviewed international journal that publishes original research and review articles that emphasize the development, manufacture and clinical applications of biomaterials. Peer-reviewed articles by biomedical specialists from around the world cover: New developments in biomaterials, R&D, properties and performance, evaluation and applications Applications in biomedical materials and devices - from sutures and wound dressings to biosensors and cardiovascular devices Current findings in biological compatibility/incompatibility of biomaterials The Journal of Biomaterials Applications publishes original articles that emphasize the development, manufacture and clinical applications of biomaterials. Biomaterials continue to be one of the most rapidly growing areas of research in plastics today and certainly one of the biggest technical challenges, since biomaterial performance is dependent on polymer compatibility with the aggressive biological environment. The Journal cuts across disciplines and focuses on medical research and topics that present the broadest view of practical applications of biomaterials in actual clinical use. The Journal of Biomaterial Applications is devoted to new and emerging biomaterials technologies, particularly focusing on the many applications which are under development at industrial biomedical and polymer research facilities, as well as the ongoing activities in academic, medical and applied clinical uses of devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信