Selenium nanoparticles and paclitaxel co-delivery by a PCL based nanofibrous scaffold to enhance melanoma therapy.

IF 2.3 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Maryam Doostan, Ata'ollah Rahmani Azar, Hassan Maleki
{"title":"Selenium nanoparticles and paclitaxel co-delivery by a PCL based nanofibrous scaffold to enhance melanoma therapy.","authors":"Maryam Doostan, Ata'ollah Rahmani Azar, Hassan Maleki","doi":"10.1177/08853282251330724","DOIUrl":null,"url":null,"abstract":"<p><p>The incidence of skin cancer has increased significantly in recent decades, highlighting the need for more effective treatments due to the limitations of traditional approaches. This study focused on creating a poly (ε-caprolactone) and chitosan (PCL/CS) nanofibrous scaffold loaded with selenium nanoparticles (Se NPs) and paclitaxel (PTX) to inhibit melanoma cell growth. The synthesized Se NPs, characterized by their uniform spherical shape and nano-scale size (∼120 nm), were incorporated into the scaffold. Then, the Se NPs and PTX were concurrently loaded into PCL/CS nanofibers at 5 wt%, which resulted in fibers with an average diameter of 253 ± 35 nm, presenting a ribbon-like morphology and absence of droplets/beads. The results indicated a high fluid absorption capacity, a wettability and high tensile strength of the produced scaffold. Moreover, the controlled release of the loaded compounds was provided over several days. Remarkably, high toxicity (>90%) and higher levels of apoptosis (>85%) were observed in A375 melanoma cells treated with the PTX-Se NPs PCL/CS scaffold. Moreover, the assessment of fibroblast growth and hemolysis confirmed the scaffold's high level of biocompatibility. The PTX-Se NPs PCL/CS nanofibers exhibit favorable properties and strong anti-tumor efficacy, making them a promising scaffold for localized and selective chemotherapy in anti-melanoma treatment.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"8853282251330724"},"PeriodicalIF":2.3000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/08853282251330724","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The incidence of skin cancer has increased significantly in recent decades, highlighting the need for more effective treatments due to the limitations of traditional approaches. This study focused on creating a poly (ε-caprolactone) and chitosan (PCL/CS) nanofibrous scaffold loaded with selenium nanoparticles (Se NPs) and paclitaxel (PTX) to inhibit melanoma cell growth. The synthesized Se NPs, characterized by their uniform spherical shape and nano-scale size (∼120 nm), were incorporated into the scaffold. Then, the Se NPs and PTX were concurrently loaded into PCL/CS nanofibers at 5 wt%, which resulted in fibers with an average diameter of 253 ± 35 nm, presenting a ribbon-like morphology and absence of droplets/beads. The results indicated a high fluid absorption capacity, a wettability and high tensile strength of the produced scaffold. Moreover, the controlled release of the loaded compounds was provided over several days. Remarkably, high toxicity (>90%) and higher levels of apoptosis (>85%) were observed in A375 melanoma cells treated with the PTX-Se NPs PCL/CS scaffold. Moreover, the assessment of fibroblast growth and hemolysis confirmed the scaffold's high level of biocompatibility. The PTX-Se NPs PCL/CS nanofibers exhibit favorable properties and strong anti-tumor efficacy, making them a promising scaffold for localized and selective chemotherapy in anti-melanoma treatment.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biomaterials Applications
Journal of Biomaterials Applications 工程技术-材料科学:生物材料
CiteScore
5.10
自引率
3.40%
发文量
144
审稿时长
1.5 months
期刊介绍: The Journal of Biomaterials Applications is a fully peer reviewed international journal that publishes original research and review articles that emphasize the development, manufacture and clinical applications of biomaterials. Peer-reviewed articles by biomedical specialists from around the world cover: New developments in biomaterials, R&D, properties and performance, evaluation and applications Applications in biomedical materials and devices - from sutures and wound dressings to biosensors and cardiovascular devices Current findings in biological compatibility/incompatibility of biomaterials The Journal of Biomaterials Applications publishes original articles that emphasize the development, manufacture and clinical applications of biomaterials. Biomaterials continue to be one of the most rapidly growing areas of research in plastics today and certainly one of the biggest technical challenges, since biomaterial performance is dependent on polymer compatibility with the aggressive biological environment. The Journal cuts across disciplines and focuses on medical research and topics that present the broadest view of practical applications of biomaterials in actual clinical use. The Journal of Biomaterial Applications is devoted to new and emerging biomaterials technologies, particularly focusing on the many applications which are under development at industrial biomedical and polymer research facilities, as well as the ongoing activities in academic, medical and applied clinical uses of devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信