A novel hydrogel-coated chest drain based on ropivacaine-glycerol-alginate hydrogel with construction and application to postoperative thoracic rehabilitation.

IF 2.5 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Sida Liao, Zijie Sun, Furong Lin, Jingyu Liang, Longmei Guo, Zixin Deng, Xinyao Zhang, Minghui Zhong, Jiamin Zeng, Bu Long, Jiawei Huang, Wenjin Ji, Lan Lan
{"title":"A novel hydrogel-coated chest drain based on ropivacaine-glycerol-alginate hydrogel with construction and application to postoperative thoracic rehabilitation.","authors":"Sida Liao, Zijie Sun, Furong Lin, Jingyu Liang, Longmei Guo, Zixin Deng, Xinyao Zhang, Minghui Zhong, Jiamin Zeng, Bu Long, Jiawei Huang, Wenjin Ji, Lan Lan","doi":"10.1177/08853282251369244","DOIUrl":null,"url":null,"abstract":"<p><p><b>Study objectives:</b> We aimed to develop a drug-loaded hydrogel-encapsulated chest drain to improve postoperative comfort and recovery in thoracic surgery patients. <b>Methods:</b> The hydrogel was modified with different ratios of glycerol and alginate, then mixed with varying concentrations of ropivacaine and fixed on a simulated chest drain tube using a mould and calcium chloride solution. The morphology, degradation, and slow-release properties of the hydrogel were assessed to identify the most suitable formulation. A bacteriostatic test was conducted using bacterial smear plates. The new chest drain was then implanted in rats using the seldinger method. Pathological changes were observed with imaging techniques such as chest ultrasound and radiographs, while lung function was assessed to evaluate the analgesic effect. After the animal experiments, hematoxylin and eosin (H&E) and Masson staining were performed on relevant tissues to analyze inflammation, and SOD activity was measured to assess oxidative stress levels. <b>Results:</b> The optimal drug-loaded hydrogel for chest drains contained 2% sodium alginate, 10% glycerol, and ropivacaine concentrations between 0.25% and 0.75%. This formulation showed superior morphological characteristics, degradation, and sustained-release properties. It also exhibited excellent bacteriostatic effects. The low-concentration (0.25%) drug-loaded hydrogel demonstrated better analgesic, anti-inflammatory, and oxidative stress-inhibitory effects in animal studies. <b>Conclusions:</b> The modified ropivacaine-alginate hydrogel-encapsulated chest drain offers a promising local slow-release strategy and may contribute to rapid rehabilitation in thoracic surgery.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"8853282251369244"},"PeriodicalIF":2.5000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/08853282251369244","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Study objectives: We aimed to develop a drug-loaded hydrogel-encapsulated chest drain to improve postoperative comfort and recovery in thoracic surgery patients. Methods: The hydrogel was modified with different ratios of glycerol and alginate, then mixed with varying concentrations of ropivacaine and fixed on a simulated chest drain tube using a mould and calcium chloride solution. The morphology, degradation, and slow-release properties of the hydrogel were assessed to identify the most suitable formulation. A bacteriostatic test was conducted using bacterial smear plates. The new chest drain was then implanted in rats using the seldinger method. Pathological changes were observed with imaging techniques such as chest ultrasound and radiographs, while lung function was assessed to evaluate the analgesic effect. After the animal experiments, hematoxylin and eosin (H&E) and Masson staining were performed on relevant tissues to analyze inflammation, and SOD activity was measured to assess oxidative stress levels. Results: The optimal drug-loaded hydrogel for chest drains contained 2% sodium alginate, 10% glycerol, and ropivacaine concentrations between 0.25% and 0.75%. This formulation showed superior morphological characteristics, degradation, and sustained-release properties. It also exhibited excellent bacteriostatic effects. The low-concentration (0.25%) drug-loaded hydrogel demonstrated better analgesic, anti-inflammatory, and oxidative stress-inhibitory effects in animal studies. Conclusions: The modified ropivacaine-alginate hydrogel-encapsulated chest drain offers a promising local slow-release strategy and may contribute to rapid rehabilitation in thoracic surgery.

基于罗哌卡因-甘油-海藻酸盐水凝胶的新型水凝胶包被胸腔引流液的构建及其在术后胸部康复中的应用。
研究目的:我们旨在开发一种载药水凝胶包封胸腔引流液,以改善胸外科患者的术后舒适度和恢复。方法:用不同比例的甘油和海藻酸盐对水凝胶进行修饰,然后与不同浓度的罗哌卡因混合,用模具和氯化钙溶液固定在模拟胸腔引流管上。对水凝胶的形态、降解和缓释性能进行了评估,以确定最合适的配方。采用细菌涂片进行抑菌试验。然后用seldinger法将新的胸腔引流管植入大鼠体内。通过胸部超声、x线片等影像学技术观察病理变化,同时评估肺功能,评价镇痛效果。动物实验结束后,对相关组织进行苏木精和伊红(H&E)染色和Masson染色,分析炎症反应,测定SOD活性,评估氧化应激水平。结果:胸腔引流最佳载药水凝胶为2%海藻酸钠、10%甘油,罗哌卡因浓度在0.25% ~ 0.75%之间。该制剂具有良好的形态特征、降解和缓释性能。并表现出良好的抑菌效果。低浓度(0.25%)载药水凝胶在动物实验中表现出较好的镇痛、抗炎和氧化应激抑制作用。结论:改良罗哌卡因海藻酸盐水凝胶包封胸引流液具有良好的局部缓释策略,有助于胸外科手术患者的快速康复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biomaterials Applications
Journal of Biomaterials Applications 工程技术-材料科学:生物材料
CiteScore
5.10
自引率
3.40%
发文量
144
审稿时长
1.5 months
期刊介绍: The Journal of Biomaterials Applications is a fully peer reviewed international journal that publishes original research and review articles that emphasize the development, manufacture and clinical applications of biomaterials. Peer-reviewed articles by biomedical specialists from around the world cover: New developments in biomaterials, R&D, properties and performance, evaluation and applications Applications in biomedical materials and devices - from sutures and wound dressings to biosensors and cardiovascular devices Current findings in biological compatibility/incompatibility of biomaterials The Journal of Biomaterials Applications publishes original articles that emphasize the development, manufacture and clinical applications of biomaterials. Biomaterials continue to be one of the most rapidly growing areas of research in plastics today and certainly one of the biggest technical challenges, since biomaterial performance is dependent on polymer compatibility with the aggressive biological environment. The Journal cuts across disciplines and focuses on medical research and topics that present the broadest view of practical applications of biomaterials in actual clinical use. The Journal of Biomaterial Applications is devoted to new and emerging biomaterials technologies, particularly focusing on the many applications which are under development at industrial biomedical and polymer research facilities, as well as the ongoing activities in academic, medical and applied clinical uses of devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信