Promotion of endothelialization of silk functionalized with IKVAV peptide and production of silk containing IKVAV-REDV sequence by transgenic silkworms.
{"title":"Promotion of endothelialization of silk functionalized with IKVAV peptide and production of silk containing IKVAV-REDV sequence by transgenic silkworms.","authors":"Tetsuo Asakura, Tatsuya Hayashi, Takashi Tanaka, Ken-Ichiro Tatematsu, Hideki Sezutsu","doi":"10.1177/08853282251345003","DOIUrl":null,"url":null,"abstract":"<p><p>Early endothelialization and the prevention of platelet adhesion are crucial in the development of small-diameter vascular grafts to prevent thrombus formation and intimal thickening. Silk fibroin (SF) from <i>Bombyx mori</i> is commonly used for such grafts. In our previous study, we found that silk vascular grafts coated with sponge-like transgenic (TG) silk incorporating the arginine-glutamic acid-aspartate-valine (REDV) peptide and transplanted into rats yielded favorable results. In this study, we aimed to achieve even better results by incorporating additional peptides into TG silk containing REDV and coating silk vascular grafts with this sponge. Initially, we sought to identify such peptides. We attempted to immobilize several peptides containing REDV onto silk using cyanuric chloride. Cell culture experiments with normal human umbilical vein endothelial cells (HUVECs) were performed on SF, SF+REDV, SF + arginine-glycine- aspartate (RGD), SF+cysteine-alanine-glycine (CAG), and SF + isoleucine-lysine- valine- alanine-valine (IKVAV) films to assess adhesion, proliferation, and extensibility; SF+RGD and SF+IKVAV films demonstrated high adhesion behavior of HUVECs. In addition, platelet adhesion on these SF+peptide films was evaluated. Platelet adhesion strength was much higher on SF+RGD films than on other SF+peptide films. These results suggest that IKVAV may be the most suitable peptide for coating SF vascular grafts. Subsequently, we successfully produced TG silk incorporating IKVAV+REDV. We then coated small-diameter silk vascular grafts with sponge-like TG silk incorporating IKVAV+REDV and measured its physical properties.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"8853282251345003"},"PeriodicalIF":2.3000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/08853282251345003","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Early endothelialization and the prevention of platelet adhesion are crucial in the development of small-diameter vascular grafts to prevent thrombus formation and intimal thickening. Silk fibroin (SF) from Bombyx mori is commonly used for such grafts. In our previous study, we found that silk vascular grafts coated with sponge-like transgenic (TG) silk incorporating the arginine-glutamic acid-aspartate-valine (REDV) peptide and transplanted into rats yielded favorable results. In this study, we aimed to achieve even better results by incorporating additional peptides into TG silk containing REDV and coating silk vascular grafts with this sponge. Initially, we sought to identify such peptides. We attempted to immobilize several peptides containing REDV onto silk using cyanuric chloride. Cell culture experiments with normal human umbilical vein endothelial cells (HUVECs) were performed on SF, SF+REDV, SF + arginine-glycine- aspartate (RGD), SF+cysteine-alanine-glycine (CAG), and SF + isoleucine-lysine- valine- alanine-valine (IKVAV) films to assess adhesion, proliferation, and extensibility; SF+RGD and SF+IKVAV films demonstrated high adhesion behavior of HUVECs. In addition, platelet adhesion on these SF+peptide films was evaluated. Platelet adhesion strength was much higher on SF+RGD films than on other SF+peptide films. These results suggest that IKVAV may be the most suitable peptide for coating SF vascular grafts. Subsequently, we successfully produced TG silk incorporating IKVAV+REDV. We then coated small-diameter silk vascular grafts with sponge-like TG silk incorporating IKVAV+REDV and measured its physical properties.
期刊介绍:
The Journal of Biomaterials Applications is a fully peer reviewed international journal that publishes original research and review articles that emphasize the development, manufacture and clinical applications of biomaterials.
Peer-reviewed articles by biomedical specialists from around the world cover:
New developments in biomaterials, R&D, properties and performance, evaluation and applications
Applications in biomedical materials and devices - from sutures and wound dressings to biosensors and cardiovascular devices
Current findings in biological compatibility/incompatibility of biomaterials
The Journal of Biomaterials Applications publishes original articles that emphasize the development, manufacture and clinical applications of biomaterials. Biomaterials continue to be one of the most rapidly growing areas of research in plastics today and certainly one of the biggest technical challenges, since biomaterial performance is dependent on polymer compatibility with the aggressive biological environment. The Journal cuts across disciplines and focuses on medical research and topics that present the broadest view of practical applications of biomaterials in actual clinical use.
The Journal of Biomaterial Applications is devoted to new and emerging biomaterials technologies, particularly focusing on the many applications which are under development at industrial biomedical and polymer research facilities, as well as the ongoing activities in academic, medical and applied clinical uses of devices.