Yang Sheng, Kangyao Zhao, Yang Liu, Peng Zhang, Yixin Sun, Rong Zhang
{"title":"载原卟啉IX纳米结构脂质载体的制备及其抗癌光动力治疗。","authors":"Yang Sheng, Kangyao Zhao, Yang Liu, Peng Zhang, Yixin Sun, Rong Zhang","doi":"10.1177/08853282251336557","DOIUrl":null,"url":null,"abstract":"<p><p>Photodynamic therapy (PDT) is a promising strategy for cancer treatment. However, the poor hydrophilicity of most photosensitizers makes them difficult to enter the cells and also susceptible to aggregation-induced quenching in aqueous environment. In this study, we encapsulated protoporphyrin IX (PPIX) by nanostructured lipid carrier to obtain a water-soluble PPIX delivery system (NLC-PPIX). The nanoparticles exhibited high colloidal stability and good fluorescence emission. The generation of <sup>1</sup>O<sub>2</sub> from the NLC-PPIX was verified using 9,10-anthracenediyl-bis(methylene)dicarboxylic acid (ABDA) as <sup>1</sup>O<sub>2</sub> indicator. The <sup>1</sup>O<sub>2</sub> quantum yield of the NLC-PPIX in aqueous solution was calculated to be ∼9%. The flow cytometry and fluorescence imaging confirmed the uptake of NLC-PPIX by the A2058 cells and the generation of <sup>1</sup>O<sub>2</sub> inside the cells under light excitation. The in vitro cytotoxicity assay showed that the NLC-PPIX exerted no toxicity on the A2058 cells under dark conditions, while light irradiation triggered high phototoxicity. The cell viability of the A2058 cells was significantly decreased and the inhibition rate reached approximately 96% by treating the cells with 200 μg/mL NLC-PPIX and 420 nm light irradiation. The successful cancer cell uptake and PDT effect revealed the therapeutic promise of our drug delivery system.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"8853282251336557"},"PeriodicalIF":2.3000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation of protoporphyrin IX loaded nanostructured lipid carriers for anticancer photodynamic therapy.\",\"authors\":\"Yang Sheng, Kangyao Zhao, Yang Liu, Peng Zhang, Yixin Sun, Rong Zhang\",\"doi\":\"10.1177/08853282251336557\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Photodynamic therapy (PDT) is a promising strategy for cancer treatment. However, the poor hydrophilicity of most photosensitizers makes them difficult to enter the cells and also susceptible to aggregation-induced quenching in aqueous environment. In this study, we encapsulated protoporphyrin IX (PPIX) by nanostructured lipid carrier to obtain a water-soluble PPIX delivery system (NLC-PPIX). The nanoparticles exhibited high colloidal stability and good fluorescence emission. The generation of <sup>1</sup>O<sub>2</sub> from the NLC-PPIX was verified using 9,10-anthracenediyl-bis(methylene)dicarboxylic acid (ABDA) as <sup>1</sup>O<sub>2</sub> indicator. The <sup>1</sup>O<sub>2</sub> quantum yield of the NLC-PPIX in aqueous solution was calculated to be ∼9%. The flow cytometry and fluorescence imaging confirmed the uptake of NLC-PPIX by the A2058 cells and the generation of <sup>1</sup>O<sub>2</sub> inside the cells under light excitation. The in vitro cytotoxicity assay showed that the NLC-PPIX exerted no toxicity on the A2058 cells under dark conditions, while light irradiation triggered high phototoxicity. The cell viability of the A2058 cells was significantly decreased and the inhibition rate reached approximately 96% by treating the cells with 200 μg/mL NLC-PPIX and 420 nm light irradiation. The successful cancer cell uptake and PDT effect revealed the therapeutic promise of our drug delivery system.</p>\",\"PeriodicalId\":15138,\"journal\":{\"name\":\"Journal of Biomaterials Applications\",\"volume\":\" \",\"pages\":\"8853282251336557\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomaterials Applications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/08853282251336557\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/08853282251336557","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Preparation of protoporphyrin IX loaded nanostructured lipid carriers for anticancer photodynamic therapy.
Photodynamic therapy (PDT) is a promising strategy for cancer treatment. However, the poor hydrophilicity of most photosensitizers makes them difficult to enter the cells and also susceptible to aggregation-induced quenching in aqueous environment. In this study, we encapsulated protoporphyrin IX (PPIX) by nanostructured lipid carrier to obtain a water-soluble PPIX delivery system (NLC-PPIX). The nanoparticles exhibited high colloidal stability and good fluorescence emission. The generation of 1O2 from the NLC-PPIX was verified using 9,10-anthracenediyl-bis(methylene)dicarboxylic acid (ABDA) as 1O2 indicator. The 1O2 quantum yield of the NLC-PPIX in aqueous solution was calculated to be ∼9%. The flow cytometry and fluorescence imaging confirmed the uptake of NLC-PPIX by the A2058 cells and the generation of 1O2 inside the cells under light excitation. The in vitro cytotoxicity assay showed that the NLC-PPIX exerted no toxicity on the A2058 cells under dark conditions, while light irradiation triggered high phototoxicity. The cell viability of the A2058 cells was significantly decreased and the inhibition rate reached approximately 96% by treating the cells with 200 μg/mL NLC-PPIX and 420 nm light irradiation. The successful cancer cell uptake and PDT effect revealed the therapeutic promise of our drug delivery system.
期刊介绍:
The Journal of Biomaterials Applications is a fully peer reviewed international journal that publishes original research and review articles that emphasize the development, manufacture and clinical applications of biomaterials.
Peer-reviewed articles by biomedical specialists from around the world cover:
New developments in biomaterials, R&D, properties and performance, evaluation and applications
Applications in biomedical materials and devices - from sutures and wound dressings to biosensors and cardiovascular devices
Current findings in biological compatibility/incompatibility of biomaterials
The Journal of Biomaterials Applications publishes original articles that emphasize the development, manufacture and clinical applications of biomaterials. Biomaterials continue to be one of the most rapidly growing areas of research in plastics today and certainly one of the biggest technical challenges, since biomaterial performance is dependent on polymer compatibility with the aggressive biological environment. The Journal cuts across disciplines and focuses on medical research and topics that present the broadest view of practical applications of biomaterials in actual clinical use.
The Journal of Biomaterial Applications is devoted to new and emerging biomaterials technologies, particularly focusing on the many applications which are under development at industrial biomedical and polymer research facilities, as well as the ongoing activities in academic, medical and applied clinical uses of devices.