Shaghayegh Amini-Mosleh-Abadi, Zahra Yazdanpanah, Farinaz Ketabat, Mahya Saadatifar, Mohammad Mohammadi, Nima Salimi, Azade Asef Nejhad, Ali Sadeghianmaryan
{"title":"海藻酸盐和明胶水凝胶浸渍骨组织工程用3D打印聚己内酯/氧化石墨烯支架的体外表征","authors":"Shaghayegh Amini-Mosleh-Abadi, Zahra Yazdanpanah, Farinaz Ketabat, Mahya Saadatifar, Mohammad Mohammadi, Nima Salimi, Azade Asef Nejhad, Ali Sadeghianmaryan","doi":"10.1177/08853282251336552","DOIUrl":null,"url":null,"abstract":"<p><p>To achieve successful bone tissue engineering (BTE), it is necessary to fabricate a biomedical scaffold with appropriate structure as well as favorable composition. Despite a broad range of studies, this remains a challenge, highlighting the need for a better understanding of how structural features (e.g., pore size) and scaffold composition influence mechanical and physical properties, as well as cellular behavior. Therefore, the objective of this study was to characterize physical properties (swelling, degradation), mechanical properties (compressive modulus), and cellular behavior in relation to varying compositions (referred to composite and hybrid scaffolds) as well as varying pore sizes in three-dimensional (3D) printed scaffolds. Composite scaffolds were fabricated from polycaprolactone (PCL) and two different graphene oxide (GO) (3% and 9% (w/v)) concentrations. Additionally, hybrid scaffolds were fabricated by impregnating 3D printed scaffolds in a hydrogel blend of alginate/gelatin. Pore sizes of 400, 1000, and 1500 μm were investigated in this study to assess their effect on the scaffold properties. Our findings showed that swelling and degradation properties were enhanced by (I) the addition of GO as well as introduction of both hydrogel and highest concentration of GO (9% (w/v) GO) into the polymeric matrix of PCL, and (II) increasing the pore size within the scaffolds. Mechanical testing revealed that compressive elastic modulus increased with decreasing pore size, incorporation of GO, and increasing GO content into the matrix of PCL. Although our investigated scaffolds with various pore sizes did not show comparable elastic moduli to that of cortical bone, they exhibited an elastic modulus range (∼31-48 MPa) matching that of trabecular bone. The highest compressive modulus (∼48 MPa) was observed in scaffolds of PCL/9% (w/v) GO (composite scaffolds) with the pore size of 400 μm. Cell viability assay demonstrated high MG-63 cell survival (greater than 70%) in all composite and hybrid scaffolds (indicating scaffold biocompatibility) except PCL/3% (w/v) GO scaffolds. The findings of this study contribute to the field of BTE by providing scaffold design insights in terms of pore size and composition.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"8853282251336552"},"PeriodicalIF":2.3000,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"<i>In vitro</i> characterization of 3D printed polycaprolactone/graphene oxide scaffolds impregnated with alginate and gelatin hydrogels for bone tissue engineering.\",\"authors\":\"Shaghayegh Amini-Mosleh-Abadi, Zahra Yazdanpanah, Farinaz Ketabat, Mahya Saadatifar, Mohammad Mohammadi, Nima Salimi, Azade Asef Nejhad, Ali Sadeghianmaryan\",\"doi\":\"10.1177/08853282251336552\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To achieve successful bone tissue engineering (BTE), it is necessary to fabricate a biomedical scaffold with appropriate structure as well as favorable composition. Despite a broad range of studies, this remains a challenge, highlighting the need for a better understanding of how structural features (e.g., pore size) and scaffold composition influence mechanical and physical properties, as well as cellular behavior. Therefore, the objective of this study was to characterize physical properties (swelling, degradation), mechanical properties (compressive modulus), and cellular behavior in relation to varying compositions (referred to composite and hybrid scaffolds) as well as varying pore sizes in three-dimensional (3D) printed scaffolds. Composite scaffolds were fabricated from polycaprolactone (PCL) and two different graphene oxide (GO) (3% and 9% (w/v)) concentrations. Additionally, hybrid scaffolds were fabricated by impregnating 3D printed scaffolds in a hydrogel blend of alginate/gelatin. Pore sizes of 400, 1000, and 1500 μm were investigated in this study to assess their effect on the scaffold properties. Our findings showed that swelling and degradation properties were enhanced by (I) the addition of GO as well as introduction of both hydrogel and highest concentration of GO (9% (w/v) GO) into the polymeric matrix of PCL, and (II) increasing the pore size within the scaffolds. Mechanical testing revealed that compressive elastic modulus increased with decreasing pore size, incorporation of GO, and increasing GO content into the matrix of PCL. Although our investigated scaffolds with various pore sizes did not show comparable elastic moduli to that of cortical bone, they exhibited an elastic modulus range (∼31-48 MPa) matching that of trabecular bone. The highest compressive modulus (∼48 MPa) was observed in scaffolds of PCL/9% (w/v) GO (composite scaffolds) with the pore size of 400 μm. Cell viability assay demonstrated high MG-63 cell survival (greater than 70%) in all composite and hybrid scaffolds (indicating scaffold biocompatibility) except PCL/3% (w/v) GO scaffolds. The findings of this study contribute to the field of BTE by providing scaffold design insights in terms of pore size and composition.</p>\",\"PeriodicalId\":15138,\"journal\":{\"name\":\"Journal of Biomaterials Applications\",\"volume\":\" \",\"pages\":\"8853282251336552\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomaterials Applications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/08853282251336552\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/08853282251336552","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
In vitro characterization of 3D printed polycaprolactone/graphene oxide scaffolds impregnated with alginate and gelatin hydrogels for bone tissue engineering.
To achieve successful bone tissue engineering (BTE), it is necessary to fabricate a biomedical scaffold with appropriate structure as well as favorable composition. Despite a broad range of studies, this remains a challenge, highlighting the need for a better understanding of how structural features (e.g., pore size) and scaffold composition influence mechanical and physical properties, as well as cellular behavior. Therefore, the objective of this study was to characterize physical properties (swelling, degradation), mechanical properties (compressive modulus), and cellular behavior in relation to varying compositions (referred to composite and hybrid scaffolds) as well as varying pore sizes in three-dimensional (3D) printed scaffolds. Composite scaffolds were fabricated from polycaprolactone (PCL) and two different graphene oxide (GO) (3% and 9% (w/v)) concentrations. Additionally, hybrid scaffolds were fabricated by impregnating 3D printed scaffolds in a hydrogel blend of alginate/gelatin. Pore sizes of 400, 1000, and 1500 μm were investigated in this study to assess their effect on the scaffold properties. Our findings showed that swelling and degradation properties were enhanced by (I) the addition of GO as well as introduction of both hydrogel and highest concentration of GO (9% (w/v) GO) into the polymeric matrix of PCL, and (II) increasing the pore size within the scaffolds. Mechanical testing revealed that compressive elastic modulus increased with decreasing pore size, incorporation of GO, and increasing GO content into the matrix of PCL. Although our investigated scaffolds with various pore sizes did not show comparable elastic moduli to that of cortical bone, they exhibited an elastic modulus range (∼31-48 MPa) matching that of trabecular bone. The highest compressive modulus (∼48 MPa) was observed in scaffolds of PCL/9% (w/v) GO (composite scaffolds) with the pore size of 400 μm. Cell viability assay demonstrated high MG-63 cell survival (greater than 70%) in all composite and hybrid scaffolds (indicating scaffold biocompatibility) except PCL/3% (w/v) GO scaffolds. The findings of this study contribute to the field of BTE by providing scaffold design insights in terms of pore size and composition.
期刊介绍:
The Journal of Biomaterials Applications is a fully peer reviewed international journal that publishes original research and review articles that emphasize the development, manufacture and clinical applications of biomaterials.
Peer-reviewed articles by biomedical specialists from around the world cover:
New developments in biomaterials, R&D, properties and performance, evaluation and applications
Applications in biomedical materials and devices - from sutures and wound dressings to biosensors and cardiovascular devices
Current findings in biological compatibility/incompatibility of biomaterials
The Journal of Biomaterials Applications publishes original articles that emphasize the development, manufacture and clinical applications of biomaterials. Biomaterials continue to be one of the most rapidly growing areas of research in plastics today and certainly one of the biggest technical challenges, since biomaterial performance is dependent on polymer compatibility with the aggressive biological environment. The Journal cuts across disciplines and focuses on medical research and topics that present the broadest view of practical applications of biomaterials in actual clinical use.
The Journal of Biomaterial Applications is devoted to new and emerging biomaterials technologies, particularly focusing on the many applications which are under development at industrial biomedical and polymer research facilities, as well as the ongoing activities in academic, medical and applied clinical uses of devices.