Theranostic performance of EGFR-targeted ceria-based nanoparticles on EGFR-positive cancers.

IF 2.3 4区 医学 Q3 ENGINEERING, BIOMEDICAL
Kochurani K Johnson, Pramod Koshy, Chantal Kopecky, Michelle Devadason, Jeff Holst, Kristopher A Kilian, Charles C Sorrell
{"title":"Theranostic performance of EGFR-targeted ceria-based nanoparticles on EGFR-positive cancers.","authors":"Kochurani K Johnson, Pramod Koshy, Chantal Kopecky, Michelle Devadason, Jeff Holst, Kristopher A Kilian, Charles C Sorrell","doi":"10.1177/08853282251336556","DOIUrl":null,"url":null,"abstract":"<p><p>EGFR is overexpressed in several cancers and hence EGFR-targeted theranostics is a promising approach to manage cancers, with widespread applicability. When nanoceria, which possesses intrinsic anticancer properties, is conjugated with EGFR-targeted fluorophore-tagged ligands, this nanoformulation can both image tumors and kill them through ROS-mediated cell destruction. Further, targeting enhances the cellular uptake of nanoparticles through EGFR-mediated endocytosis. The present work evaluates the <i>in vitro</i> theranostic performance of FITC-tagged EGF-functionalized nanoceria on EGFR-positive cancers. Three EGFR-positive cell lines were used for the study: MDA-MB-231, PANC-1 and HeLa. The EGFR-binding specificity of the EGF-functionalized nanoparticles was confirmed using western blot analysis. The therapeutic and diagnostic activities of the theranostic nanoparticles were confirmed, the former by cell viability assays and ROS measurements and the latter by confocal imaging. The results demonstrate significant ROS elevation levels for the treated cells and hence the suitability of the particles for therapeutic applications. The nanoparticles also are capable of detection using fluorescence imaging following 5 minutes of treatment, thus confirming the applicability for imaging. Hemolysis assay studies revealed excellent hemocompatibility of the nanoparticles, confirming their suitability for <i>in vivo</i> applications.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"8853282251336556"},"PeriodicalIF":2.3000,"publicationDate":"2025-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/08853282251336556","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

EGFR is overexpressed in several cancers and hence EGFR-targeted theranostics is a promising approach to manage cancers, with widespread applicability. When nanoceria, which possesses intrinsic anticancer properties, is conjugated with EGFR-targeted fluorophore-tagged ligands, this nanoformulation can both image tumors and kill them through ROS-mediated cell destruction. Further, targeting enhances the cellular uptake of nanoparticles through EGFR-mediated endocytosis. The present work evaluates the in vitro theranostic performance of FITC-tagged EGF-functionalized nanoceria on EGFR-positive cancers. Three EGFR-positive cell lines were used for the study: MDA-MB-231, PANC-1 and HeLa. The EGFR-binding specificity of the EGF-functionalized nanoparticles was confirmed using western blot analysis. The therapeutic and diagnostic activities of the theranostic nanoparticles were confirmed, the former by cell viability assays and ROS measurements and the latter by confocal imaging. The results demonstrate significant ROS elevation levels for the treated cells and hence the suitability of the particles for therapeutic applications. The nanoparticles also are capable of detection using fluorescence imaging following 5 minutes of treatment, thus confirming the applicability for imaging. Hemolysis assay studies revealed excellent hemocompatibility of the nanoparticles, confirming their suitability for in vivo applications.

靶向egfr的铈纳米颗粒对egfr阳性癌症的治疗效果
EGFR在几种癌症中过度表达,因此EGFR靶向治疗是一种有希望的治疗癌症的方法,具有广泛的适用性。当具有内在抗癌特性的纳米粒与egfr靶向荧光标记配体结合时,这种纳米制剂既可以成像肿瘤,又可以通过ros介导的细胞破坏杀死肿瘤。此外,靶向通过egfr介导的内吞作用增强了纳米颗粒的细胞摄取。本研究评估了fitc标记的egf功能化纳米粒对egfr阳性癌症的体外治疗性能。研究使用了三种egfr阳性细胞系:MDA-MB-231、PANC-1和HeLa。利用western blot分析证实了egf功能化纳米颗粒的egfr结合特异性。治疗性纳米颗粒的治疗和诊断活性被证实,前者通过细胞活力测定和ROS测量,后者通过共聚焦成像。结果表明,处理细胞的ROS水平显著升高,因此颗粒适合于治疗应用。处理5分钟后,纳米颗粒也能够使用荧光成像进行检测,从而证实了成像的适用性。溶血试验研究显示纳米颗粒具有良好的血液相容性,证实了它们在体内应用的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Biomaterials Applications
Journal of Biomaterials Applications 工程技术-材料科学:生物材料
CiteScore
5.10
自引率
3.40%
发文量
144
审稿时长
1.5 months
期刊介绍: The Journal of Biomaterials Applications is a fully peer reviewed international journal that publishes original research and review articles that emphasize the development, manufacture and clinical applications of biomaterials. Peer-reviewed articles by biomedical specialists from around the world cover: New developments in biomaterials, R&D, properties and performance, evaluation and applications Applications in biomedical materials and devices - from sutures and wound dressings to biosensors and cardiovascular devices Current findings in biological compatibility/incompatibility of biomaterials The Journal of Biomaterials Applications publishes original articles that emphasize the development, manufacture and clinical applications of biomaterials. Biomaterials continue to be one of the most rapidly growing areas of research in plastics today and certainly one of the biggest technical challenges, since biomaterial performance is dependent on polymer compatibility with the aggressive biological environment. The Journal cuts across disciplines and focuses on medical research and topics that present the broadest view of practical applications of biomaterials in actual clinical use. The Journal of Biomaterial Applications is devoted to new and emerging biomaterials technologies, particularly focusing on the many applications which are under development at industrial biomedical and polymer research facilities, as well as the ongoing activities in academic, medical and applied clinical uses of devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信