International Journal of Number Theory最新文献

筛选
英文 中文
Explicit evaluation of triple convolution sums of the divisor functions 除数函数三重卷积和的显式计算
IF 0.7 3区 数学
International Journal of Number Theory Pub Date : 2024-04-27 DOI: 10.1142/s1793042124500544
B. Ramakrishnan, Brundaban Sahu, Anup Kumar Singh
{"title":"Explicit evaluation of triple convolution sums of the divisor functions","authors":"B. Ramakrishnan, Brundaban Sahu, Anup Kumar Singh","doi":"10.1142/s1793042124500544","DOIUrl":"https://doi.org/10.1142/s1793042124500544","url":null,"abstract":"<p>In this paper, we use the theory of modular forms and give a general method to obtain the convolution sums <disp-formula-group><span><math altimg=\"eq-00001.gif\" display=\"block\" overflow=\"scroll\"><mrow><msubsup><mrow><mi>W</mi></mrow><mrow><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow><mrow><msub><mrow><mi>r</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>r</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></msubsup><mo stretchy=\"false\">(</mo><mi>n</mi><mo stretchy=\"false\">)</mo><mo>=</mo><munder><mrow><mo>∑</mo></mrow><mrow><mfrac linethickness=\"0\"><mrow><msub><mrow><mi>l</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>l</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>l</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>∈</mo><mi>ℕ</mi></mrow><mrow><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>l</mi></mrow><mrow><mn>1</mn></mrow></msub><mo stretchy=\"false\">+</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>l</mi></mrow><mrow><mn>2</mn></mrow></msub><mo stretchy=\"false\">+</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>3</mn></mrow></msub><msub><mrow><mi>l</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>=</mo><mi>n</mi></mrow></mfrac></mrow></munder><msub><mrow><mi>σ</mi></mrow><mrow><msub><mrow><mi>r</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msub><mo stretchy=\"false\">(</mo><msub><mrow><mi>l</mi></mrow><mrow><mn>1</mn></mrow></msub><mo stretchy=\"false\">)</mo><msub><mrow><mi>σ</mi></mrow><mrow><msub><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msub><mo stretchy=\"false\">(</mo><msub><mrow><mi>l</mi></mrow><mrow><mn>2</mn></mrow></msub><mo stretchy=\"false\">)</mo><msub><mrow><mi>σ</mi></mrow><mrow><msub><mrow><mi>r</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></msub><mo stretchy=\"false\">(</mo><msub><mrow><mi>l</mi></mrow><mrow><mn>3</mn></mrow></msub><mo stretchy=\"false\">)</mo><mo>,</mo></mrow></math></span><span></span></disp-formula-group> for odd integers <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>r</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>r</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>≥</mo><mn>1</mn><mo>,</mo><mspace width=\"0.25em\"></mspace></math></span><span></span> and <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>,</mo><mi>n</mi><mo>∈</mo><mi>ℕ</mi></math></span><span></span>, where <span><math altimg=\"eq-00004.gif\" display=\"inline\" overf","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140833094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Near-miss identities and spinor genus classification of ternary quadratic forms with congruence conditions 具有全等条件的三元二次型的近似等式和旋量属分类
IF 0.7 3区 数学
International Journal of Number Theory Pub Date : 2024-04-27 DOI: 10.1142/s1793042124500507
Kush Singhal
{"title":"Near-miss identities and spinor genus classification of ternary quadratic forms with congruence conditions","authors":"Kush Singhal","doi":"10.1142/s1793042124500507","DOIUrl":"https://doi.org/10.1142/s1793042124500507","url":null,"abstract":"<p>In this paper, near-miss identities for the number of representations of some integral ternary quadratic forms with congruence conditions are found and proven. The genus and spinor genus of the corresponding lattice cosets are then classified. Finally, a complete genus and spinor genus classification for all conductor 2 lattice cosets of 2-adically unimodular lattices is given.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140833165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dense clusters of zeros near the zero-free region of ζ(s) ζ(s)无零区域附近密集的零群
IF 0.7 3区 数学
International Journal of Number Theory Pub Date : 2024-04-25 DOI: 10.1142/s1793042124500520
William D. Banks
{"title":"Dense clusters of zeros near the zero-free region of ζ(s)","authors":"William D. Banks","doi":"10.1142/s1793042124500520","DOIUrl":"https://doi.org/10.1142/s1793042124500520","url":null,"abstract":"<p>The methods of Korobov and Vinogradov produce a zero-free region for the Riemann zeta function <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>ζ</mi><mo stretchy=\"false\">(</mo><mi>s</mi><mo stretchy=\"false\">)</mo></math></span><span></span> of the form <disp-formula-group><span><math altimg=\"eq-00004.gif\" display=\"block\" overflow=\"scroll\"><mrow><mi>σ</mi><mo>&gt;</mo><mn>1</mn><mo stretchy=\"false\">−</mo><mfrac><mrow><mi>c</mi></mrow><mrow><msup><mrow><mo stretchy=\"false\">(</mo><mo>log</mo><mi>τ</mi><mo stretchy=\"false\">)</mo></mrow><mrow><mn>2</mn><mo stretchy=\"false\">/</mo><mn>3</mn></mrow></msup><msup><mrow><mo stretchy=\"false\">(</mo><mo>log</mo><mo>log</mo><mi>τ</mi><mo stretchy=\"false\">)</mo></mrow><mrow><mn>1</mn><mo stretchy=\"false\">/</mo><mn>3</mn></mrow></msup></mrow></mfrac><mspace width=\"1em\"></mspace><mo stretchy=\"false\">(</mo><mi>τ</mi><mo>≔</mo><mo stretchy=\"false\">|</mo><mi>t</mi><mo stretchy=\"false\">|</mo><mo stretchy=\"false\">+</mo><mn>1</mn><mn>0</mn><mn>0</mn><mo stretchy=\"false\">)</mo><mo>.</mo></mrow></math></span><span></span></disp-formula-group> For many decades, the general shape of the zero-free region has not changed (although explicit known values for <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>c</mi></math></span><span></span> have improved over the years). In this paper, we show that if the zero-free region <i>cannot</i> be widened substantially, then there exist infinitely many distinct dense clusters of zeros of <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>ζ</mi><mo stretchy=\"false\">(</mo><mi>s</mi><mo stretchy=\"false\">)</mo></math></span><span></span> lying close to the edge of the zero-free region. Our proof provides specific information about the location of these clusters and the number of zeros contained in them. To prove the result, we introduce and apply a variant of the original method of de la Vallée Poussin combined with ideas of Turán to control the real parts of power sums. We also prove similar results for <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>L</mi></math></span><span></span>-functions associated to <i>nonquadratic</i> Dirichlet characters <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mi>χ</mi></math></span><span></span> modulo <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mi>q</mi><mo>≥</mo><mn>2</mn></math></span><span></span>.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140800385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A note on logarithmic equidistribution 关于对数等差数列的说明
IF 0.7 3区 数学
International Journal of Number Theory Pub Date : 2024-04-25 DOI: 10.1142/s1793042124500647
Gerold Schefer
{"title":"A note on logarithmic equidistribution","authors":"Gerold Schefer","doi":"10.1142/s1793042124500647","DOIUrl":"https://doi.org/10.1142/s1793042124500647","url":null,"abstract":"<p>For every algebraic number <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>κ</mi></math></span><span></span> on the unit circle which is not a root of unity we prove the existence of a strict sequence of algebraic numbers whose height tends to zero, such that the averages of the evaluation of <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>f</mi></mrow><mrow><mi>κ</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>z</mi><mo stretchy=\"false\">)</mo><mo>=</mo><mo>log</mo><mspace width=\"-.17em\"></mspace><mo>|</mo><mi>z</mi><mo stretchy=\"false\">−</mo><mi>κ</mi><mo>|</mo></math></span><span></span> at the conjugates are essentially bounded from above by <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">−</mo><mi>h</mi><mo stretchy=\"false\">(</mo><mi>κ</mi><mo stretchy=\"false\">)</mo></math></span><span></span>. This completes a characterization on functions <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>f</mi></mrow><mrow><mi>κ</mi></mrow></msub></math></span><span></span> initiated by Autissier and Baker–Masser, who cover the cases <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>κ</mi><mo>=</mo><mn>2</mn></math></span><span></span> and <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mo>|</mo><mi>κ</mi><mo>|</mo><mo>≠</mo><mn>1</mn></math></span><span></span>, respectively. Using the same ideas we also prove analogues in the <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>p</mi></math></span><span></span>-adic setting.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140800310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Statistics for Iwasawa invariants of elliptic curves, II 椭圆曲线岩泽不变式的统计,II
IF 0.7 3区 数学
International Journal of Number Theory Pub Date : 2024-04-18 DOI: 10.1142/s1793042124500556
Debanjana Kundu, Anwesh Ray
{"title":"Statistics for Iwasawa invariants of elliptic curves, II","authors":"Debanjana Kundu, Anwesh Ray","doi":"10.1142/s1793042124500556","DOIUrl":"https://doi.org/10.1142/s1793042124500556","url":null,"abstract":"<p>We study the average behavior of the Iwasawa invariants for Selmer groups of elliptic curves. These results lie at the intersection of arithmetic statistics and Iwasawa theory. We obtain lower bounds for the density of rational elliptic curves with prescribed Iwasawa invariants.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140625163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Oscillations of Fourier coefficients of product of L-functions at integers in a sparse set 稀疏集合中整数处 L 函数乘积的傅立叶系数振荡
IF 0.7 3区 数学
International Journal of Number Theory Pub Date : 2024-04-10 DOI: 10.1142/s1793042124500854
Babita, Mohit Tripathi, Lalit Vaishya
{"title":"Oscillations of Fourier coefficients of product of L-functions at integers in a sparse set","authors":"Babita, Mohit Tripathi, Lalit Vaishya","doi":"10.1142/s1793042124500854","DOIUrl":"https://doi.org/10.1142/s1793042124500854","url":null,"abstract":"<p>Let <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>f</mi></math></span><span></span> be a normalized Hecke eigenform of weight <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>k</mi></math></span><span></span> for the full modular group <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>S</mi><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub><mo stretchy=\"false\">(</mo><mi>ℤ</mi><mo stretchy=\"false\">)</mo></math></span><span></span>. In this paper, we obtain the asymptotic of higher moments of general divisor functions associated to the Fourier coefficients of Rankin–Selberg <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>L</mi></math></span><span></span>-functions <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>R</mi><mo stretchy=\"false\">(</mo><mi>s</mi><mo>,</mo><mi>f</mi><mo stretchy=\"false\">×</mo><mi>f</mi><mo stretchy=\"false\">)</mo></math></span><span></span>, supported at the integers represented by primitive integral positive-definite binary quadratic forms (reduced forms) of a fixed discriminant <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>D</mi><mo>&lt;</mo><mn>0</mn><mo>.</mo></math></span><span></span> We improve previous results in the case when the reduced form is given by <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mi mathvariant=\"cal\">𝒬</mi><mo stretchy=\"false\">(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><mo stretchy=\"false\">)</mo><mo>=</mo><msubsup><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></msubsup><mo stretchy=\"false\">+</mo><msubsup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow><mrow><mn>2</mn></mrow></msubsup><mo>.</mo></math></span><span></span></p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140599024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Double and triple character sums and gaps between the elements of subgroups of finite fields 有限域子群元素间的双重和三重特征和与间隙
IF 0.7 3区 数学
International Journal of Number Theory Pub Date : 2024-04-10 DOI: 10.1142/s1793042124500842
Jiankang Wang, Zhefeng Xu
{"title":"Double and triple character sums and gaps between the elements of subgroups of finite fields","authors":"Jiankang Wang, Zhefeng Xu","doi":"10.1142/s1793042124500842","DOIUrl":"https://doi.org/10.1142/s1793042124500842","url":null,"abstract":"<p>For an odd prime <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>p</mi></math></span><span></span>, let <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>𝔽</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span><span></span> be the finite field of <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>p</mi></math></span><span></span> elements. The main purpose of this paper is to establish new results on gaps between the elements of multiplicative subgroups of finite fields. For any <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>c</mi><mo>∈</mo><msubsup><mrow><mi>𝔽</mi></mrow><mrow><mi>p</mi></mrow><mrow><mo stretchy=\"false\">∗</mo></mrow></msubsup></math></span><span></span>, we also obtain new upper bounds of the following double character sum <disp-formula-group><span><math altimg=\"eq-00005.gif\" display=\"block\" overflow=\"scroll\"><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>c</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>χ</mi><mo>,</mo><msub><mrow><mi mathvariant=\"cal\">ℋ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi mathvariant=\"cal\">ℋ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo stretchy=\"false\">)</mo><mo>=</mo><munder><mrow><mo>∑</mo></mrow><mrow><msub><mrow><mi>h</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∈</mo><msub><mrow><mi mathvariant=\"cal\">ℋ</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></munder><munder><mrow><mo>∑</mo></mrow><mrow><msub><mrow><mi>h</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>∈</mo><msub><mrow><mi mathvariant=\"cal\">ℋ</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></munder><mi>χ</mi><mo stretchy=\"false\">(</mo><mi>a</mi><mo stretchy=\"false\">+</mo><mi>b</mi><msub><mrow><mi>h</mi></mrow><mrow><mn>1</mn></mrow></msub><mo stretchy=\"false\">+</mo><mi>c</mi><msub><mrow><mi>h</mi></mrow><mrow><mn>2</mn></mrow></msub><mo stretchy=\"false\">)</mo></mrow></math></span><span></span></disp-formula-group> and a triple character sum <disp-formula-group><span><math altimg=\"eq-00006.gif\" display=\"block\" overflow=\"scroll\"><mrow><msub><mrow><mi>S</mi></mrow><mrow><mi>χ</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><msub><mrow><mi mathvariant=\"cal\">ℋ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi mathvariant=\"cal\">ℋ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mi mathvariant=\"cal\">𝒩</mi><mo stretchy=\"false\">)</mo><mo>=</mo><munder><mrow><mo>∑</mo></mrow><mrow><mi>x</mi><mo>∈</mo><mi mathvariant=\"cal\">𝒩</mi></mrow></munder><munder><mrow><mo>∑</mo></mrow><mrow><msub><mrow><mi>h</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∈</mo><msub><mrow><mi mathvariant=\"cal\">ℋ</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></munder><munder><mrow><mo>∑</mo></mrow><mrow><msub><mrow><mi>h</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>∈</mo><msub><mrow><mi mathvariant=\"cal\">ℋ</mi>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140599021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The transcendence of growth constants associated with polynomial recursions 与多项式递推相关的增长常数的超越性
IF 0.7 3区 数学
International Journal of Number Theory Pub Date : 2024-04-06 DOI: 10.1142/s1793042124500672
Veekesh Kumar
{"title":"The transcendence of growth constants associated with polynomial recursions","authors":"Veekesh Kumar","doi":"10.1142/s1793042124500672","DOIUrl":"https://doi.org/10.1142/s1793042124500672","url":null,"abstract":"<p>Let <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>P</mi><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo><mo>:</mo><mo>=</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>d</mi></mrow></msub><msup><mrow><mi>x</mi></mrow><mrow><mi>d</mi></mrow></msup><mo stretchy=\"false\">+</mo><mo>⋯</mo><mo stretchy=\"false\">+</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><mi>ℚ</mi><mo stretchy=\"false\">[</mo><mi>x</mi><mo stretchy=\"false\">]</mo></math></span><span></span>, <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>a</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>&gt;</mo><mn>0</mn></math></span><span></span>, be a polynomial of degree <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>d</mi><mo>≥</mo><mn>2</mn></math></span><span></span>. Let <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">)</mo></math></span><span></span> be a sequence of integers satisfying <disp-formula-group><span><math altimg=\"eq-00005.gif\" display=\"block\" overflow=\"scroll\"><mrow><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi><mo stretchy=\"false\">+</mo><mn>1</mn></mrow></msub><mo>=</mo><mi>P</mi><mo stretchy=\"false\">(</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">)</mo><mspace width=\"1em\"></mspace><mstyle><mtext>for all </mtext></mstyle><mi>n</mi><mo>=</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mspace width=\"1em\"></mspace><mstyle><mtext>and</mtext></mstyle><mspace width=\"1em\"></mspace><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>→</mo><mi>∞</mi><mspace width=\"1em\"></mspace><mstyle><mtext>as </mtext></mstyle><mi>n</mi><mo>→</mo><mi>∞</mi><mo>.</mo></mrow></math></span><span></span></disp-formula-group></p><p>Set <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>α</mi><mo>:</mo><mo>=</mo><msub><mrow><mo>lim</mo></mrow><mrow><mi>n</mi><mo>→</mo><mi>∞</mi></mrow></msub><msubsup><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow><mrow><msup><mrow><mi>d</mi></mrow><mrow><mo stretchy=\"false\">−</mo><mi>n</mi></mrow></msup></mrow></msubsup></math></span><span></span>. Then, under the assumption <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><msubsup><mrow><mi>a</mi></mrow><mrow><mi>d</mi></mrow><mrow><mn>1</mn><mo stretchy=\"false\">/</mo><mo stretchy=\"false\">(</mo><mi>d</mi><mo stretchy=\"false\">−</mo><mn>1</mn><mo stretchy=\"false\">)</mo></mrow></msubsup><mo>∈</mo><mi>ℚ</mi></math></span><span></span>, in a recent result by [A. Dubickas, Transcendency of some constants related to integer sequences of polynomial iterations, <i>Ramanujan J.</i><b>57</b> (2022) 569–581], either <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mi>α</mi></math></span><span></span> is transcendental or <span><math altimg=\"eq-00009.","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140599455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A note on Schmidt’s subspace type theorems for hypersurfaces in subgeneral position 关于次一般位置超曲面的施密特子空间类型定理的说明
IF 0.7 3区 数学
International Journal of Number Theory Pub Date : 2024-04-06 DOI: 10.1142/s1793042124500490
Lei Shi, Qiming Yan
{"title":"A note on Schmidt’s subspace type theorems for hypersurfaces in subgeneral position","authors":"Lei Shi, Qiming Yan","doi":"10.1142/s1793042124500490","DOIUrl":"https://doi.org/10.1142/s1793042124500490","url":null,"abstract":"<p>In this paper, motivated by Nochka weights and the replacing hypersurfaces technique, we give an improvement of Schmidt’s subspace type theorem for hypersurfaces which are located in subgeneral position.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140599264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A new upper bound on Ruzsa’s numbers on the Erdős–Turán conjecture 关于厄尔多斯-图兰猜想的鲁兹萨数的新上限
IF 0.7 3区 数学
International Journal of Number Theory Pub Date : 2024-04-06 DOI: 10.1142/s179304212450074x
Yuchen Ding, Lilu Zhao
{"title":"A new upper bound on Ruzsa’s numbers on the Erdős–Turán conjecture","authors":"Yuchen Ding, Lilu Zhao","doi":"10.1142/s179304212450074x","DOIUrl":"https://doi.org/10.1142/s179304212450074x","url":null,"abstract":"<p>In this paper, we show that the Ruzsa number <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>R</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span><span></span> is bounded by <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mn>1</mn><mn>9</mn><mn>2</mn></math></span><span></span> for any positive integer <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>m</mi></math></span><span></span>, which improves the prior bound <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>R</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>≤</mo><mn>2</mn><mn>8</mn><mn>8</mn></math></span><span></span> given by Chen in 2008.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140599268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信