International Journal of Number Theory最新文献

筛选
英文 中文
Near-squares in binary recurrence sequences 二元递推序列中的近似值
IF 0.7 3区 数学
International Journal of Number Theory Pub Date : 2024-04-05 DOI: 10.1142/s1793042124500787
Nikos Tzanakis, Paul Voutier
{"title":"Near-squares in binary recurrence sequences","authors":"Nikos Tzanakis, Paul Voutier","doi":"10.1142/s1793042124500787","DOIUrl":"https://doi.org/10.1142/s1793042124500787","url":null,"abstract":"<p>We call an integer a <i>near-square</i> if its absolute value is a square or a prime times a square. We investigate such near-squares in the binary recurrence sequences defined for integers <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>a</mi><mo>≥</mo><mn>3</mn></math></span><span></span> by <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo stretchy=\"false\">(</mo><mi>a</mi><mo stretchy=\"false\">)</mo><mo>=</mo><mn>0</mn></math></span><span></span>, <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>u</mi></mrow><mrow><mn>1</mn></mrow></msub><mo stretchy=\"false\">(</mo><mi>a</mi><mo stretchy=\"false\">)</mo><mo>=</mo><mn>1</mn></math></span><span></span> and <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>u</mi></mrow><mrow><mi>n</mi><mo stretchy=\"false\">+</mo><mn>2</mn></mrow></msub><mo stretchy=\"false\">(</mo><mi>a</mi><mo stretchy=\"false\">)</mo><mo>=</mo><mi>a</mi><msub><mrow><mi>u</mi></mrow><mrow><mi>n</mi><mo stretchy=\"false\">+</mo><mn>1</mn></mrow></msub><mo stretchy=\"false\">(</mo><mi>a</mi><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">−</mo><msub><mrow><mi>u</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>a</mi><mo stretchy=\"false\">)</mo></math></span><span></span> for <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi><mo>≥</mo><mn>0</mn></math></span><span></span>. We show that for a given <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>a</mi><mo>≥</mo><mn>3</mn></math></span><span></span>, there is at most one <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi><mo>≥</mo><mn>5</mn></math></span><span></span> such that <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>u</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>a</mi><mo stretchy=\"false\">)</mo></math></span><span></span> is a near-square. With the exceptions of <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>u</mi></mrow><mrow><mn>6</mn></mrow></msub><mo stretchy=\"false\">(</mo><mn>3</mn><mo stretchy=\"false\">)</mo><mo>=</mo><mn>1</mn><msup><mrow><mn>2</mn></mrow><mrow><mn>2</mn></mrow></msup></math></span><span></span> and <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>u</mi></mrow><mrow><mn>7</mn></mrow></msub><mo stretchy=\"false\">(</mo><mn>6</mn><mo stretchy=\"false\">)</mo><mo>=</mo><mn>2</mn><mn>3</mn><mn>9</mn><mo stretchy=\"false\">⋅</mo><mn>1</mn><msup><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></msup></math></span><span></span>, any such <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>u</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>a</mi><mo stretchy=\"false\">)</mo></math></span><span></span> can be a nea","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":"57 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140599447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The cuspidal cohomology of GL3/ℚ and cubic fields GL3/ℚ 和立方域的尖顶同调
IF 0.7 3区 数学
International Journal of Number Theory Pub Date : 2024-04-05 DOI: 10.1142/s1793042124500829
Avner Ash, Dan Yasaki
{"title":"The cuspidal cohomology of GL3/ℚ and cubic fields","authors":"Avner Ash, Dan Yasaki","doi":"10.1142/s1793042124500829","DOIUrl":"https://doi.org/10.1142/s1793042124500829","url":null,"abstract":"<p>We investigate the subspace of the homology of a congruence subgroup <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi mathvariant=\"normal\">Γ</mi></math></span><span></span> of <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mstyle><mtext mathvariant=\"normal\">SL</mtext></mstyle></mrow><mrow><mn>3</mn></mrow></msub><mo stretchy=\"false\">(</mo><mi>ℤ</mi><mo stretchy=\"false\">)</mo></math></span><span></span> with coefficients in the Steinberg module <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mstyle><mtext mathvariant=\"normal\">St</mtext></mstyle><mo stretchy=\"false\">(</mo><msup><mrow><mi>ℚ</mi></mrow><mrow><mn>3</mn></mrow></msup><mo stretchy=\"false\">)</mo></math></span><span></span> which is spanned by certain modular symbols formed using the units of a totally real cubic field <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>E</mi></math></span><span></span>. By Borel–Serre duality, <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub><mo stretchy=\"false\">(</mo><mi mathvariant=\"normal\">Γ</mi><mo>,</mo><mstyle><mtext mathvariant=\"normal\">St</mtext></mstyle><mo stretchy=\"false\">(</mo><msup><mrow><mi>ℚ</mi></mrow><mrow><mn>3</mn></mrow></msup><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">)</mo></math></span><span></span> is isomorphic to <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>H</mi></mrow><mrow><mn>3</mn></mrow></msup><mo stretchy=\"false\">(</mo><mi mathvariant=\"normal\">Γ</mi><mo>,</mo><mi>ℚ</mi><mo stretchy=\"false\">)</mo></math></span><span></span>. The Borel–Serre duals of the modular symbols in question necessarily lie in the cuspidal cohomology <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><msubsup><mrow><mi>H</mi></mrow><mrow><mstyle><mtext mathvariant=\"normal\">cusp</mtext></mstyle></mrow><mrow><mn>3</mn></mrow></msubsup><mo stretchy=\"false\">(</mo><mi mathvariant=\"normal\">Γ</mi><mo>,</mo><mi>ℚ</mi><mo stretchy=\"false\">)</mo></math></span><span></span>. Their span is a naturally defined subspace <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mi>C</mi><mo stretchy=\"false\">(</mo><mi mathvariant=\"normal\">Γ</mi><mo>,</mo><mi>E</mi><mo stretchy=\"false\">)</mo></math></span><span></span> of <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><msubsup><mrow><mi>H</mi></mrow><mrow><mstyle><mtext mathvariant=\"normal\">cusp</mtext></mstyle></mrow><mrow><mn>3</mn></mrow></msubsup><mo stretchy=\"false\">(</mo><mi mathvariant=\"normal\">Γ</mi><mo>,</mo><mi>ℚ</mi><mo stretchy=\"false\">)</mo></math></span><span></span>. Using a computer, we study where <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mi>C</mi><mo stretchy=\"false\">(</mo><mi mathvariant=\"normal\">Γ</mi><mo>,</mo><mi>E</mi><mo stretchy=\"false\">)</mo></math></span><span></span> sits between <span>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":"90 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140599115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynatomic Galois groups for a family of quadratic rational maps 二次有理映射族的动态伽罗瓦群
IF 0.7 3区 数学
International Journal of Number Theory Pub Date : 2024-04-05 DOI: 10.1142/s1793042124500830
David Krumm, Allan Lacy
{"title":"Dynatomic Galois groups for a family of quadratic rational maps","authors":"David Krumm, Allan Lacy","doi":"10.1142/s1793042124500830","DOIUrl":"https://doi.org/10.1142/s1793042124500830","url":null,"abstract":"<p>For every nonconstant rational function <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>ϕ</mi><mo>∈</mo><mi>ℚ</mi><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo></math></span><span></span>, the Galois groups of the dynatomic polynomials of <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>ϕ</mi></math></span><span></span> encode various properties of <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>ϕ</mi></math></span><span></span> are of interest in the subject of arithmetic dynamics. We study here the structure of these Galois groups as <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>ϕ</mi></math></span><span></span> varies in a particular one-parameter family of maps, namely, the quadratic rational maps having a critical point of period 2. In particular, we provide explicit descriptions of the third and fourth dynatomic Galois groups for maps in this family.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":"53 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140599013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Relations of multiple t-values of general level 一般水平多个 t 值的关系
IF 0.7 3区 数学
International Journal of Number Theory Pub Date : 2024-04-05 DOI: 10.1142/s1793042124500696
Zhonghua Li, Zhenlu Wang
{"title":"Relations of multiple t-values of general level","authors":"Zhonghua Li, Zhenlu Wang","doi":"10.1142/s1793042124500696","DOIUrl":"https://doi.org/10.1142/s1793042124500696","url":null,"abstract":"<p>We study the relations of multiple <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>t</mi></math></span><span></span>-values of general level. The generating function of sums of multiple <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>t</mi></math></span><span></span>-(star) values of level <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>N</mi></math></span><span></span> with fixed weight, depth and height is represented by the generalized hypergeometric function <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span><span></span>, which generalizes the results for multiple zeta(-star) values and multiple <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>t</mi></math></span><span></span>-(star) values. As applications, we obtain formulas for the generating functions of sums of multiple <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mi>t</mi></math></span><span></span>-(star) values of level <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mi>N</mi></math></span><span></span> with height one and maximal height and a weighted sum formula for sums of multiple <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mi>t</mi></math></span><span></span>-(star) values of level <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mi>N</mi></math></span><span></span> with fixed weight and depth. Using the stuffle algebra, we also get the symmetric sum formulas and Hoffman’s restricted sum formulas for multiple <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><mi>t</mi></math></span><span></span>-(star) values of level <span><math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"><mi>N</mi></math></span><span></span>. Some evaluations of multiple <span><math altimg=\"eq-00014.gif\" display=\"inline\" overflow=\"scroll\"><mi>t</mi></math></span><span></span>-star values of level <span><math altimg=\"eq-00015.gif\" display=\"inline\" overflow=\"scroll\"><mn>2</mn></math></span><span></span> with one–two–three indices are given.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":"49 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140599091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rational points on x3 + x2y2 + y3 = k x3 + x2y2 + y3 = k 上的有理点
IF 0.7 3区 数学
International Journal of Number Theory Pub Date : 2024-04-05 DOI: 10.1142/s1793042124500878
Xiaoan Lang, Jeremy Rouse
{"title":"Rational points on x3 + x2y2 + y3 = k","authors":"Xiaoan Lang, Jeremy Rouse","doi":"10.1142/s1793042124500878","DOIUrl":"https://doi.org/10.1142/s1793042124500878","url":null,"abstract":"<p>We study the problem of determining, given an integer <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>k</mi></math></span><span></span>, the rational solutions to <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>C</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>:</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msup><mi>z</mi><mspace width=\".17em\"></mspace><mo stretchy=\"false\">+</mo><mspace width=\".17em\"></mspace><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mspace width=\".17em\"></mspace><mo stretchy=\"false\">+</mo><mspace width=\".17em\"></mspace><msup><mrow><mi>y</mi></mrow><mrow><mn>3</mn></mrow></msup><mi>z</mi><mo>=</mo><mi>k</mi><msup><mrow><mi>z</mi></mrow><mrow><mn>4</mn></mrow></msup></math></span><span></span>. For <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>k</mi><mo>≠</mo><mn>0</mn></math></span><span></span>, the curve <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>C</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span><span></span> has genus <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mn>3</mn></math></span><span></span> and its Jacobian is isogenous to the product of three elliptic curves <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>E</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>k</mi></mrow></msub></math></span><span></span>, <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn><mo>,</mo><mi>k</mi></mrow></msub></math></span><span></span>, <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>E</mi></mrow><mrow><mn>3</mn><mo>,</mo><mi>k</mi></mrow></msub></math></span><span></span>. We explicitly determine the rational points on <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>C</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span><span></span> under the assumption that one of these elliptic curves has rank zero. We discuss the challenges involved in extending our result to handle all <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><mi>k</mi><mo>∈</mo><mi>ℚ</mi></math></span><span></span>.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":"14 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140599095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Irreducibility and galois groups of truncated binomial polynomials 截断二项式多项式的不可约性和伽洛瓦群
IF 0.7 3区 数学
International Journal of Number Theory Pub Date : 2024-04-05 DOI: 10.1142/s1793042124500817
Shanta Laishram, Prabhakar Yadav
{"title":"Irreducibility and galois groups of truncated binomial polynomials","authors":"Shanta Laishram, Prabhakar Yadav","doi":"10.1142/s1793042124500817","DOIUrl":"https://doi.org/10.1142/s1793042124500817","url":null,"abstract":"&lt;p&gt;For positive integers &lt;span&gt;&lt;math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;, let &lt;span&gt;&lt;math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;mo&gt;:&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mo&gt;∑&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;j&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mfenced close=\")\" open=\"(\" separators=\"\"&gt;&lt;mfrac linethickness=\"0\"&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;j&lt;/mi&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/mfenced&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;j&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mfenced close=\")\" open=\"(\" separators=\"\"&gt;&lt;mfrac linethickness=\"0\"&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/mfenced&gt;&lt;mo stretchy=\"false\"&gt;+&lt;/mo&gt;&lt;mfenced close=\")\" open=\"(\" separators=\"\"&gt;&lt;mfrac linethickness=\"0\"&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/mfenced&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;+&lt;/mo&gt;&lt;mo&gt;…&lt;/mo&gt;&lt;mo stretchy=\"false\"&gt;+&lt;/mo&gt;&lt;mfenced close=\")\" open=\"(\" separators=\"\"&gt;&lt;mfrac linethickness=\"0\"&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/mfenced&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; be the truncated binomial expansion of &lt;span&gt;&lt;math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo stretchy=\"false\"&gt;+&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; consisting of all terms of degree &lt;span&gt;&lt;math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; It is conjectured that for &lt;span&gt;&lt;math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;+&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;, the polynomial &lt;span&gt;&lt;math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; is irreducible. We confirm this conjecture when &lt;span&gt;&lt;math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;+&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;.&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; Also we show for any &lt;span&gt;&lt;math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mn&gt;0&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; and &lt;span&gt;&lt;math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;&lt;&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;+&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;+&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":"1 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140599248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Finite sequences of integers expressible as sums of two squares 可表示为两个正方形之和的整数有限序列
IF 0.7 3区 数学
International Journal of Number Theory Pub Date : 2024-04-05 DOI: 10.1142/s1793042124500866
Ajai Choudhry, Bibekananda Maji
{"title":"Finite sequences of integers expressible as sums of two squares","authors":"Ajai Choudhry, Bibekananda Maji","doi":"10.1142/s1793042124500866","DOIUrl":"https://doi.org/10.1142/s1793042124500866","url":null,"abstract":"<p>This paper is concerned with finite sequences of integers that may be written as sums of squares of two nonzero integers. We first find infinitely many integers <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi></math></span><span></span> such that <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi><mo>,</mo><mi>n</mi><mo stretchy=\"false\">+</mo><mi>h</mi></math></span><span></span> and <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi><mo stretchy=\"false\">+</mo><mi>k</mi></math></span><span></span> are all sums of two squares where <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>h</mi></math></span><span></span> and <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>k</mi></math></span><span></span> are two arbitrary integers, and as an immediate corollary obtain, in parametric terms, three consecutive integers that are sums of two squares. Similarly we obtain <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi></math></span><span></span> in parametric terms such that all the four integers <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi><mo>,</mo><mi>n</mi><mo stretchy=\"false\">+</mo><mn>1</mn><mo>,</mo><mi>n</mi><mo stretchy=\"false\">+</mo><mn>2</mn><mo>,</mo><mi>n</mi><mo stretchy=\"false\">+</mo><mn>4</mn></math></span><span></span> are sums of two squares. We also find infinitely many integers <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi></math></span><span></span> such that all the five integers <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi><mo>,</mo><mi>n</mi><mo stretchy=\"false\">+</mo><mn>1</mn><mo>,</mo><mi>n</mi><mo stretchy=\"false\">+</mo><mn>2</mn><mo>,</mo><mi>n</mi><mo stretchy=\"false\">+</mo><mn>4</mn><mo>,</mo><mi>n</mi><mo stretchy=\"false\">+</mo><mn>5</mn></math></span><span></span> are sums of two squares, and finally, we find infinitely many arithmetic progressions, with common difference <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mn>4</mn></math></span><span></span>, of five integers all of which are sums of two squares.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":"6 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140599249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The genus of a quotient of several types of numerical semigroups 几类数字半群商数的属数
IF 0.7 3区 数学
International Journal of Number Theory Pub Date : 2024-04-05 DOI: 10.1142/s1793042124500891
Kyeongjun Lee, Hayan Nam
{"title":"The genus of a quotient of several types of numerical semigroups","authors":"Kyeongjun Lee, Hayan Nam","doi":"10.1142/s1793042124500891","DOIUrl":"https://doi.org/10.1142/s1793042124500891","url":null,"abstract":"<p>Finding the Frobenius number and the genus of any numerical semigroup <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>S</mi></math></span><span></span> is a well-known open problem. Similarly, it has been studied how to express the Frobenius number and the genus of a quotient of a numerical semigroup. In this paper, by enumerating the Hilbert series of each type of numerical semigroup, we show an expression for the genus of a quotient of numerical semigroups generated by one of the following series: arithmetic progression, geometric series, and Pythagorean triple.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":"32 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140602443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Some separable integer partition classes 一些可分离的整数分割类
IF 0.7 3区 数学
International Journal of Number Theory Pub Date : 2024-03-26 DOI: 10.1142/s1793042124500660
Y. H. Chen, Thomas Y. He, F. Tang, J. J. Wei
{"title":"Some separable integer partition classes","authors":"Y. H. Chen, Thomas Y. He, F. Tang, J. J. Wei","doi":"10.1142/s1793042124500660","DOIUrl":"https://doi.org/10.1142/s1793042124500660","url":null,"abstract":"<p>Recently, Andrews introduced separable integer partition classes and analyzed some well-known theorems. In this paper, we investigate partitions with parts separated by parity introduced by Andrews with the aid of separable integer partition classes with modulus <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mn>2</mn></math></span><span></span>. We also extend separable integer partition classes with modulus <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mn>1</mn></math></span><span></span> to overpartitions, called separable overpartition classes. We study overpartitions and the overpartition analogue of Rogers–Ramanujan identities, which are separable overpartition classes.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":"39 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140325648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Applications of zero-free regions on averages and shifted convolution sums of Hecke eigenvalues 无零区域在赫克特征值的平均值和移位卷积和上的应用
IF 0.7 3区 数学
International Journal of Number Theory Pub Date : 2024-03-26 DOI: 10.1142/s1793042124500775
Jiseong Kim
{"title":"Applications of zero-free regions on averages and shifted convolution sums of Hecke eigenvalues","authors":"Jiseong Kim","doi":"10.1142/s1793042124500775","DOIUrl":"https://doi.org/10.1142/s1793042124500775","url":null,"abstract":"<p>By assuming Vinogradov–Korobov-type zero-free regions and the generalized Ramanujan–Petersson conjecture, we establish nontrivial upper bounds for almost all short sums of Fourier coefficients of Hecke–Maass cusp forms for <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>S</mi><mi>L</mi><mo stretchy=\"false\">(</mo><mi>n</mi><mo>,</mo><mi>ℤ</mi><mo stretchy=\"false\">)</mo></math></span><span></span>. As applications, we obtain nontrivial upper bounds for the averages of shifted sums involving coefficients of the Hecke–Maass cusp forms for <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>S</mi><mi>L</mi><mo stretchy=\"false\">(</mo><mi>n</mi><mo>,</mo><mi>ℤ</mi><mo stretchy=\"false\">)</mo></math></span><span></span>. Furthermore, we present a conditional result regarding sign changes of these coefficients.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":"141 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140325498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信