无零区域在赫克特征值的平均值和移位卷积和上的应用

IF 0.5 3区 数学 Q3 MATHEMATICS
Jiseong Kim
{"title":"无零区域在赫克特征值的平均值和移位卷积和上的应用","authors":"Jiseong Kim","doi":"10.1142/s1793042124500775","DOIUrl":null,"url":null,"abstract":"<p>By assuming Vinogradov–Korobov-type zero-free regions and the generalized Ramanujan–Petersson conjecture, we establish nontrivial upper bounds for almost all short sums of Fourier coefficients of Hecke–Maass cusp forms for <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>S</mi><mi>L</mi><mo stretchy=\"false\">(</mo><mi>n</mi><mo>,</mo><mi>ℤ</mi><mo stretchy=\"false\">)</mo></math></span><span></span>. As applications, we obtain nontrivial upper bounds for the averages of shifted sums involving coefficients of the Hecke–Maass cusp forms for <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>S</mi><mi>L</mi><mo stretchy=\"false\">(</mo><mi>n</mi><mo>,</mo><mi>ℤ</mi><mo stretchy=\"false\">)</mo></math></span><span></span>. Furthermore, we present a conditional result regarding sign changes of these coefficients.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Applications of zero-free regions on averages and shifted convolution sums of Hecke eigenvalues\",\"authors\":\"Jiseong Kim\",\"doi\":\"10.1142/s1793042124500775\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>By assuming Vinogradov–Korobov-type zero-free regions and the generalized Ramanujan–Petersson conjecture, we establish nontrivial upper bounds for almost all short sums of Fourier coefficients of Hecke–Maass cusp forms for <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>S</mi><mi>L</mi><mo stretchy=\\\"false\\\">(</mo><mi>n</mi><mo>,</mo><mi>ℤ</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>. As applications, we obtain nontrivial upper bounds for the averages of shifted sums involving coefficients of the Hecke–Maass cusp forms for <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>S</mi><mi>L</mi><mo stretchy=\\\"false\\\">(</mo><mi>n</mi><mo>,</mo><mi>ℤ</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>. Furthermore, we present a conditional result regarding sign changes of these coefficients.</p>\",\"PeriodicalId\":14293,\"journal\":{\"name\":\"International Journal of Number Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793042124500775\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1793042124500775","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

通过假设维诺格拉多夫-科罗波夫型无零区域和广义拉马努扬-彼得森猜想,我们为 SL(n,ℤ) 的 Hecke-Maass cusp 形式的几乎所有傅里叶系数短和建立了非微观上界。作为应用,我们得到了涉及 SL(n,ℤ) Hecke-Maass cusp 形式系数的移位和的平均值的非难上限。此外,我们还提出了关于这些系数符号变化的条件结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Applications of zero-free regions on averages and shifted convolution sums of Hecke eigenvalues

By assuming Vinogradov–Korobov-type zero-free regions and the generalized Ramanujan–Petersson conjecture, we establish nontrivial upper bounds for almost all short sums of Fourier coefficients of Hecke–Maass cusp forms for SL(n,). As applications, we obtain nontrivial upper bounds for the averages of shifted sums involving coefficients of the Hecke–Maass cusp forms for SL(n,). Furthermore, we present a conditional result regarding sign changes of these coefficients.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
14.30%
发文量
97
审稿时长
4-8 weeks
期刊介绍: This journal publishes original research papers and review articles on all areas of Number Theory, including elementary number theory, analytic number theory, algebraic number theory, arithmetic algebraic geometry, geometry of numbers, diophantine equations, diophantine approximation, transcendental number theory, probabilistic number theory, modular forms, multiplicative number theory, additive number theory, partitions, and computational number theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信