International Journal of Number Theory最新文献

筛选
英文 中文
Riemann hypothesis for period polynomials for cusp forms on Γ0(N) Γ0(N)上尖顶形式周期多项式的黎曼假设
IF 0.7 3区 数学
International Journal of Number Theory Pub Date : 2024-05-30 DOI: 10.1142/s1793042124500982
SoYoung Choi
{"title":"Riemann hypothesis for period polynomials for cusp forms on Γ0(N)","authors":"SoYoung Choi","doi":"10.1142/s1793042124500982","DOIUrl":"https://doi.org/10.1142/s1793042124500982","url":null,"abstract":"<p>We prove that for even integer <span><math altimg=\"eq-00003.gif\" display=\"inline\"><mi>k</mi></math></span><span></span>, almost all of zeros of the period polynomial associated to a cusp form of weight <span><math altimg=\"eq-00004.gif\" display=\"inline\"><mi>k</mi></math></span><span></span> on <span><math altimg=\"eq-00005.gif\" display=\"inline\"><msub><mrow><mi mathvariant=\"normal\">Γ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo stretchy=\"false\">(</mo><mi>N</mi><mo stretchy=\"false\">)</mo></math></span><span></span> are on the circle <span><math altimg=\"eq-00006.gif\" display=\"inline\"><mo>|</mo><mi>z</mi><mo>|</mo><mo>=</mo><mn>1</mn><mo stretchy=\"false\">/</mo><msqrt><mrow><mi>N</mi></mrow></msqrt></math></span><span></span> under some conditions.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":"18 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141253809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lehmer-type bounds and counting rational points of bounded heights on Abelian varieties 阿贝尔变体上的雷默型边界和有界高的有理点计数
IF 0.7 3区 数学
International Journal of Number Theory Pub Date : 2024-05-29 DOI: 10.1142/s1793042124501045
Narasimha Kumar, Satyabrat Sahoo
{"title":"Lehmer-type bounds and counting rational points of bounded heights on Abelian varieties","authors":"Narasimha Kumar, Satyabrat Sahoo","doi":"10.1142/s1793042124501045","DOIUrl":"https://doi.org/10.1142/s1793042124501045","url":null,"abstract":"<p>In this paper, we study Lehmer-type bounds for the Néron–Tate height of <span><math altimg=\"eq-00001.gif\" display=\"inline\"><mover accent=\"true\"><mrow><mi>K</mi></mrow><mo>̄</mo></mover></math></span><span></span>-points on abelian varieties <span><math altimg=\"eq-00002.gif\" display=\"inline\"><mi>A</mi></math></span><span></span> over number fields <span><math altimg=\"eq-00003.gif\" display=\"inline\"><mi>K</mi></math></span><span></span>. Then, we estimate the number of <span><math altimg=\"eq-00004.gif\" display=\"inline\"><mi>K</mi></math></span><span></span>-rational points on <span><math altimg=\"eq-00005.gif\" display=\"inline\"><mi>A</mi></math></span><span></span> with Néron–Tate height <span><math altimg=\"eq-00006.gif\" display=\"inline\"><mo>≤</mo><mo>log</mo><mi>B</mi></math></span><span></span> for <span><math altimg=\"eq-00007.gif\" display=\"inline\"><mi>B</mi><mo>≫</mo><mn>0</mn></math></span><span></span>. This estimate involves a constant <span><math altimg=\"eq-00008.gif\" display=\"inline\"><mi>C</mi></math></span><span></span>, which is not explicit. However, for elliptic curves and the product of elliptic curves over <span><math altimg=\"eq-00009.gif\" display=\"inline\"><mi>K</mi></math></span><span></span>, we make the constant explicitly computable.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":"41 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141253929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Arithmetic progressions in polynomial orbits 多项式轨道中的算术级数
IF 0.7 3区 数学
International Journal of Number Theory Pub Date : 2024-05-29 DOI: 10.1142/s1793042124500970
Mohammad Sadek, Mohamed Wafik, Tuğba Yesin
{"title":"Arithmetic progressions in polynomial orbits","authors":"Mohammad Sadek, Mohamed Wafik, Tuğba Yesin","doi":"10.1142/s1793042124500970","DOIUrl":"https://doi.org/10.1142/s1793042124500970","url":null,"abstract":"<p>Let <span><math altimg=\"eq-00001.gif\" display=\"inline\"><mi>f</mi></math></span><span></span> be a polynomial with integer coefficients whose degree is at least 2. We consider the problem of covering the orbit <span><math altimg=\"eq-00002.gif\" display=\"inline\"><msub><mrow><mo>Orb</mo></mrow><mrow><mi>f</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>t</mi><mo stretchy=\"false\">)</mo><mo>=</mo><mo stretchy=\"false\">{</mo><mi>t</mi><mo>,</mo><mi>f</mi><mo stretchy=\"false\">(</mo><mi>t</mi><mo stretchy=\"false\">)</mo><mo>,</mo><mi>f</mi><mo stretchy=\"false\">(</mo><mi>f</mi><mo stretchy=\"false\">(</mo><mi>t</mi><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">)</mo><mo>,</mo><mo>…</mo><mo stretchy=\"false\">}</mo></math></span><span></span>, where <span><math altimg=\"eq-00003.gif\" display=\"inline\"><mi>t</mi></math></span><span></span> is an integer, using arithmetic progressions each of which contains <span><math altimg=\"eq-00004.gif\" display=\"inline\"><mi>t</mi></math></span><span></span>. Fixing an integer <span><math altimg=\"eq-00005.gif\" display=\"inline\"><mi>k</mi><mo>≥</mo><mn>2</mn></math></span><span></span>, we prove that it is impossible to cover <span><math altimg=\"eq-00006.gif\" display=\"inline\"><msub><mrow><mo>Orb</mo></mrow><mrow><mi>f</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>t</mi><mo stretchy=\"false\">)</mo></math></span><span></span> using <span><math altimg=\"eq-00007.gif\" display=\"inline\"><mi>k</mi></math></span><span></span> such arithmetic progressions unless <span><math altimg=\"eq-00008.gif\" display=\"inline\"><msub><mrow><mo>Orb</mo></mrow><mrow><mi>f</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>t</mi><mo stretchy=\"false\">)</mo></math></span><span></span> is contained in one of these progressions. In fact, we show that the relative density of terms covered by <span><math altimg=\"eq-00009.gif\" display=\"inline\"><mi>k</mi></math></span><span></span> such arithmetic progressions in <span><math altimg=\"eq-00010.gif\" display=\"inline\"><msub><mrow><mo>Orb</mo></mrow><mrow><mi>f</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>t</mi><mo stretchy=\"false\">)</mo></math></span><span></span> is uniformly bounded from above by a bound that depends solely on <span><math altimg=\"eq-00011.gif\" display=\"inline\"><mi>k</mi></math></span><span></span>. In addition, the latter relative density can be made as close as desired to <span><math altimg=\"eq-00012.gif\" display=\"inline\"><mn>1</mn></math></span><span></span> by an appropriate choice of <span><math altimg=\"eq-00013.gif\" display=\"inline\"><mi>k</mi></math></span><span></span> arithmetic progressions containing <span><math altimg=\"eq-00014.gif\" display=\"inline\"><mi>t</mi></math></span><span></span> if <span><math altimg=\"eq-00015.gif\" display=\"inline\"><mi>k</mi></math></span><span></span> is allowed to be large enough.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":"34 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141253805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On mean values for the exponential sum of divisor functions 关于除数函数指数和的平均值
IF 0.7 3区 数学
International Journal of Number Theory Pub Date : 2024-05-17 DOI: 10.1142/s1793042124500933
Wei Zhang
{"title":"On mean values for the exponential sum of divisor functions","authors":"Wei Zhang","doi":"10.1142/s1793042124500933","DOIUrl":"https://doi.org/10.1142/s1793042124500933","url":null,"abstract":"<p>In this paper, we study mean values for exponential sums of divisor functions. We improve previous results of [M. Pandey, Moment estimates for the exponential sum with higher divisor functions, <i>C. R. Math. Acad. Sci. Paris</i><b>360</b> (2022) 419–424].</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":"44 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141146381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Explicit evaluation of triple convolution sums of the divisor functions 除数函数三重卷积和的显式计算
IF 0.7 3区 数学
International Journal of Number Theory Pub Date : 2024-04-27 DOI: 10.1142/s1793042124500544
B. Ramakrishnan, Brundaban Sahu, Anup Kumar Singh
{"title":"Explicit evaluation of triple convolution sums of the divisor functions","authors":"B. Ramakrishnan, Brundaban Sahu, Anup Kumar Singh","doi":"10.1142/s1793042124500544","DOIUrl":"https://doi.org/10.1142/s1793042124500544","url":null,"abstract":"&lt;p&gt;In this paper, we use the theory of modular forms and give a general method to obtain the convolution sums &lt;disp-formula-group&gt;&lt;span&gt;&lt;math altimg=\"eq-00001.gif\" display=\"block\" overflow=\"scroll\"&gt;&lt;mrow&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;W&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;munder&gt;&lt;mrow&gt;&lt;mo&gt;∑&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mfrac linethickness=\"0\"&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;l&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;l&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;l&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;ℕ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;l&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo stretchy=\"false\"&gt;+&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;l&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo stretchy=\"false\"&gt;+&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;l&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/mrow&gt;&lt;/munder&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;l&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;l&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;σ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;l&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;&lt;/disp-formula-group&gt; for odd integers &lt;span&gt;&lt;math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mspace width=\"0.25em\"&gt;&lt;/mspace&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; and &lt;span&gt;&lt;math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;ℕ&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;, where &lt;span&gt;&lt;math altimg=\"eq-00004.gif\" display=\"inline\" overf","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":"60 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140833094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Uniformity of quadratic points 二次点的均匀性
IF 0.7 3区 数学
International Journal of Number Theory Pub Date : 2024-04-27 DOI: 10.1142/s1793042124500532
Tangli Ge
{"title":"Uniformity of quadratic points","authors":"Tangli Ge","doi":"10.1142/s1793042124500532","DOIUrl":"https://doi.org/10.1142/s1793042124500532","url":null,"abstract":"<p>In this paper, we extend a uniformity result of Dimitrov <i>et al.</i> [Uniformity in Mordell-Lang for curves, <i>Ann. of Math.</i> (<i>2</i>) <b>194</b>(1) (2021) 237–298] to dimension two and use it to get a uniform bound on the cardinality of the set of all quadratic points for non-hyperelliptic non-bielliptic curves which only depend on the Mordell–Weil rank, the genus of the curve and the degree of the number field.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":"56 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140833108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The 𝔭-primary uniform boundedness conjecture for Drinfeld modules 德林菲尔德模块的𝔭主均匀有界猜想
IF 0.7 3区 数学
International Journal of Number Theory Pub Date : 2024-04-27 DOI: 10.1142/s1793042124500611
Shun Ishii
{"title":"The 𝔭-primary uniform boundedness conjecture for Drinfeld modules","authors":"Shun Ishii","doi":"10.1142/s1793042124500611","DOIUrl":"https://doi.org/10.1142/s1793042124500611","url":null,"abstract":"<p>In this paper, we study a Drinfeld module analogue of the Uniform Boundedness Conjecture on the torsion of abelian varieties. As a result, we prove the <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>𝔭</mi></math></span><span></span>-primary Uniform Boundedness Conjecture for one-dimensional families of Drinfeld modules of arbitrary rank, which extends a result of Poonen. This result can be regarded as a Drinfeld module analogue of the Cadoret–Tamagawa’s result on the <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>p</mi></math></span><span></span>-primary Uniform Boundedness Conjecture for one-dimensional families of abelian varieties.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":"18 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140833113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Near-miss identities and spinor genus classification of ternary quadratic forms with congruence conditions 具有全等条件的三元二次型的近似等式和旋量属分类
IF 0.7 3区 数学
International Journal of Number Theory Pub Date : 2024-04-27 DOI: 10.1142/s1793042124500507
Kush Singhal
{"title":"Near-miss identities and spinor genus classification of ternary quadratic forms with congruence conditions","authors":"Kush Singhal","doi":"10.1142/s1793042124500507","DOIUrl":"https://doi.org/10.1142/s1793042124500507","url":null,"abstract":"<p>In this paper, near-miss identities for the number of representations of some integral ternary quadratic forms with congruence conditions are found and proven. The genus and spinor genus of the corresponding lattice cosets are then classified. Finally, a complete genus and spinor genus classification for all conductor 2 lattice cosets of 2-adically unimodular lattices is given.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":"25 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140833165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dense clusters of zeros near the zero-free region of ζ(s) ζ(s)无零区域附近密集的零群
IF 0.7 3区 数学
International Journal of Number Theory Pub Date : 2024-04-25 DOI: 10.1142/s1793042124500520
William D. Banks
{"title":"Dense clusters of zeros near the zero-free region of ζ(s)","authors":"William D. Banks","doi":"10.1142/s1793042124500520","DOIUrl":"https://doi.org/10.1142/s1793042124500520","url":null,"abstract":"<p>The methods of Korobov and Vinogradov produce a zero-free region for the Riemann zeta function <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>ζ</mi><mo stretchy=\"false\">(</mo><mi>s</mi><mo stretchy=\"false\">)</mo></math></span><span></span> of the form <disp-formula-group><span><math altimg=\"eq-00004.gif\" display=\"block\" overflow=\"scroll\"><mrow><mi>σ</mi><mo>&gt;</mo><mn>1</mn><mo stretchy=\"false\">−</mo><mfrac><mrow><mi>c</mi></mrow><mrow><msup><mrow><mo stretchy=\"false\">(</mo><mo>log</mo><mi>τ</mi><mo stretchy=\"false\">)</mo></mrow><mrow><mn>2</mn><mo stretchy=\"false\">/</mo><mn>3</mn></mrow></msup><msup><mrow><mo stretchy=\"false\">(</mo><mo>log</mo><mo>log</mo><mi>τ</mi><mo stretchy=\"false\">)</mo></mrow><mrow><mn>1</mn><mo stretchy=\"false\">/</mo><mn>3</mn></mrow></msup></mrow></mfrac><mspace width=\"1em\"></mspace><mo stretchy=\"false\">(</mo><mi>τ</mi><mo>≔</mo><mo stretchy=\"false\">|</mo><mi>t</mi><mo stretchy=\"false\">|</mo><mo stretchy=\"false\">+</mo><mn>1</mn><mn>0</mn><mn>0</mn><mo stretchy=\"false\">)</mo><mo>.</mo></mrow></math></span><span></span></disp-formula-group> For many decades, the general shape of the zero-free region has not changed (although explicit known values for <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>c</mi></math></span><span></span> have improved over the years). In this paper, we show that if the zero-free region <i>cannot</i> be widened substantially, then there exist infinitely many distinct dense clusters of zeros of <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>ζ</mi><mo stretchy=\"false\">(</mo><mi>s</mi><mo stretchy=\"false\">)</mo></math></span><span></span> lying close to the edge of the zero-free region. Our proof provides specific information about the location of these clusters and the number of zeros contained in them. To prove the result, we introduce and apply a variant of the original method of de la Vallée Poussin combined with ideas of Turán to control the real parts of power sums. We also prove similar results for <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>L</mi></math></span><span></span>-functions associated to <i>nonquadratic</i> Dirichlet characters <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mi>χ</mi></math></span><span></span> modulo <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mi>q</mi><mo>≥</mo><mn>2</mn></math></span><span></span>.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":"51 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140800385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A note on logarithmic equidistribution 关于对数等差数列的说明
IF 0.7 3区 数学
International Journal of Number Theory Pub Date : 2024-04-25 DOI: 10.1142/s1793042124500647
Gerold Schefer
{"title":"A note on logarithmic equidistribution","authors":"Gerold Schefer","doi":"10.1142/s1793042124500647","DOIUrl":"https://doi.org/10.1142/s1793042124500647","url":null,"abstract":"<p>For every algebraic number <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>κ</mi></math></span><span></span> on the unit circle which is not a root of unity we prove the existence of a strict sequence of algebraic numbers whose height tends to zero, such that the averages of the evaluation of <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>f</mi></mrow><mrow><mi>κ</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>z</mi><mo stretchy=\"false\">)</mo><mo>=</mo><mo>log</mo><mspace width=\"-.17em\"></mspace><mo>|</mo><mi>z</mi><mo stretchy=\"false\">−</mo><mi>κ</mi><mo>|</mo></math></span><span></span> at the conjugates are essentially bounded from above by <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">−</mo><mi>h</mi><mo stretchy=\"false\">(</mo><mi>κ</mi><mo stretchy=\"false\">)</mo></math></span><span></span>. This completes a characterization on functions <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>f</mi></mrow><mrow><mi>κ</mi></mrow></msub></math></span><span></span> initiated by Autissier and Baker–Masser, who cover the cases <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>κ</mi><mo>=</mo><mn>2</mn></math></span><span></span> and <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mo>|</mo><mi>κ</mi><mo>|</mo><mo>≠</mo><mn>1</mn></math></span><span></span>, respectively. Using the same ideas we also prove analogues in the <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>p</mi></math></span><span></span>-adic setting.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":"27 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140800310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信