阿贝尔变体上的雷默型边界和有界高的有理点计数

IF 0.5 3区 数学 Q3 MATHEMATICS
Narasimha Kumar, Satyabrat Sahoo
{"title":"阿贝尔变体上的雷默型边界和有界高的有理点计数","authors":"Narasimha Kumar, Satyabrat Sahoo","doi":"10.1142/s1793042124501045","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study Lehmer-type bounds for the Néron–Tate height of <span><math altimg=\"eq-00001.gif\" display=\"inline\"><mover accent=\"true\"><mrow><mi>K</mi></mrow><mo>̄</mo></mover></math></span><span></span>-points on abelian varieties <span><math altimg=\"eq-00002.gif\" display=\"inline\"><mi>A</mi></math></span><span></span> over number fields <span><math altimg=\"eq-00003.gif\" display=\"inline\"><mi>K</mi></math></span><span></span>. Then, we estimate the number of <span><math altimg=\"eq-00004.gif\" display=\"inline\"><mi>K</mi></math></span><span></span>-rational points on <span><math altimg=\"eq-00005.gif\" display=\"inline\"><mi>A</mi></math></span><span></span> with Néron–Tate height <span><math altimg=\"eq-00006.gif\" display=\"inline\"><mo>≤</mo><mo>log</mo><mi>B</mi></math></span><span></span> for <span><math altimg=\"eq-00007.gif\" display=\"inline\"><mi>B</mi><mo>≫</mo><mn>0</mn></math></span><span></span>. This estimate involves a constant <span><math altimg=\"eq-00008.gif\" display=\"inline\"><mi>C</mi></math></span><span></span>, which is not explicit. However, for elliptic curves and the product of elliptic curves over <span><math altimg=\"eq-00009.gif\" display=\"inline\"><mi>K</mi></math></span><span></span>, we make the constant explicitly computable.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lehmer-type bounds and counting rational points of bounded heights on Abelian varieties\",\"authors\":\"Narasimha Kumar, Satyabrat Sahoo\",\"doi\":\"10.1142/s1793042124501045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we study Lehmer-type bounds for the Néron–Tate height of <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\"><mover accent=\\\"true\\\"><mrow><mi>K</mi></mrow><mo>̄</mo></mover></math></span><span></span>-points on abelian varieties <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\"><mi>A</mi></math></span><span></span> over number fields <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\"><mi>K</mi></math></span><span></span>. Then, we estimate the number of <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\"><mi>K</mi></math></span><span></span>-rational points on <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\"><mi>A</mi></math></span><span></span> with Néron–Tate height <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\"><mo>≤</mo><mo>log</mo><mi>B</mi></math></span><span></span> for <span><math altimg=\\\"eq-00007.gif\\\" display=\\\"inline\\\"><mi>B</mi><mo>≫</mo><mn>0</mn></math></span><span></span>. This estimate involves a constant <span><math altimg=\\\"eq-00008.gif\\\" display=\\\"inline\\\"><mi>C</mi></math></span><span></span>, which is not explicit. However, for elliptic curves and the product of elliptic curves over <span><math altimg=\\\"eq-00009.gif\\\" display=\\\"inline\\\"><mi>K</mi></math></span><span></span>, we make the constant explicitly computable.</p>\",\"PeriodicalId\":14293,\"journal\":{\"name\":\"International Journal of Number Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793042124501045\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1793042124501045","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了数域 K 上的无性变项 A 上 K̄ 点的奈伦-塔特高度的雷默型边界。然后,我们估计了 B≫0 时 A 上奈伦-塔特高度≤logB 的 K 有理点的数量。这个估计涉及一个常数 C,它并不明确。然而,对于椭圆曲线和 K 上的椭圆曲线乘积,我们可以明确地计算这个常数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lehmer-type bounds and counting rational points of bounded heights on Abelian varieties

In this paper, we study Lehmer-type bounds for the Néron–Tate height of K̄-points on abelian varieties A over number fields K. Then, we estimate the number of K-rational points on A with Néron–Tate height logB for B0. This estimate involves a constant C, which is not explicit. However, for elliptic curves and the product of elliptic curves over K, we make the constant explicitly computable.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
14.30%
发文量
97
审稿时长
4-8 weeks
期刊介绍: This journal publishes original research papers and review articles on all areas of Number Theory, including elementary number theory, analytic number theory, algebraic number theory, arithmetic algebraic geometry, geometry of numbers, diophantine equations, diophantine approximation, transcendental number theory, probabilistic number theory, modular forms, multiplicative number theory, additive number theory, partitions, and computational number theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信