德林菲尔德模块的𝔭主均匀有界猜想

IF 0.5 3区 数学 Q3 MATHEMATICS
Shun Ishii
{"title":"德林菲尔德模块的𝔭主均匀有界猜想","authors":"Shun Ishii","doi":"10.1142/s1793042124500611","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study a Drinfeld module analogue of the Uniform Boundedness Conjecture on the torsion of abelian varieties. As a result, we prove the <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>𝔭</mi></math></span><span></span>-primary Uniform Boundedness Conjecture for one-dimensional families of Drinfeld modules of arbitrary rank, which extends a result of Poonen. This result can be regarded as a Drinfeld module analogue of the Cadoret–Tamagawa’s result on the <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>p</mi></math></span><span></span>-primary Uniform Boundedness Conjecture for one-dimensional families of abelian varieties.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":"18 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The 𝔭-primary uniform boundedness conjecture for Drinfeld modules\",\"authors\":\"Shun Ishii\",\"doi\":\"10.1142/s1793042124500611\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we study a Drinfeld module analogue of the Uniform Boundedness Conjecture on the torsion of abelian varieties. As a result, we prove the <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>𝔭</mi></math></span><span></span>-primary Uniform Boundedness Conjecture for one-dimensional families of Drinfeld modules of arbitrary rank, which extends a result of Poonen. This result can be regarded as a Drinfeld module analogue of the Cadoret–Tamagawa’s result on the <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>p</mi></math></span><span></span>-primary Uniform Boundedness Conjecture for one-dimensional families of abelian varieties.</p>\",\"PeriodicalId\":14293,\"journal\":{\"name\":\"International Journal of Number Theory\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793042124500611\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1793042124500611","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了关于无性变体扭转的统一有界性猜想的德林费尔德模块类比。结果,我们证明了任意秩的 Drinfeld 模块一维族的𝔭-主均匀有界猜想,这扩展了 Poonen 的一个结果。这一结果可以看作是加多雷-玉川关于无性变体一维族 p 主均匀有界猜想结果的德林费尔德模类似物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The 𝔭-primary uniform boundedness conjecture for Drinfeld modules

In this paper, we study a Drinfeld module analogue of the Uniform Boundedness Conjecture on the torsion of abelian varieties. As a result, we prove the 𝔭-primary Uniform Boundedness Conjecture for one-dimensional families of Drinfeld modules of arbitrary rank, which extends a result of Poonen. This result can be regarded as a Drinfeld module analogue of the Cadoret–Tamagawa’s result on the p-primary Uniform Boundedness Conjecture for one-dimensional families of abelian varieties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
14.30%
发文量
97
审稿时长
4-8 weeks
期刊介绍: This journal publishes original research papers and review articles on all areas of Number Theory, including elementary number theory, analytic number theory, algebraic number theory, arithmetic algebraic geometry, geometry of numbers, diophantine equations, diophantine approximation, transcendental number theory, probabilistic number theory, modular forms, multiplicative number theory, additive number theory, partitions, and computational number theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信