{"title":"Explicit evaluation of triple convolution sums of the divisor functions","authors":"B. Ramakrishnan, Brundaban Sahu, Anup Kumar Singh","doi":"10.1142/s1793042124500544","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we use the theory of modular forms and give a general method to obtain the convolution sums <disp-formula-group><span><math altimg=\"eq-00001.gif\" display=\"block\" overflow=\"scroll\"><mrow><msubsup><mrow><mi>W</mi></mrow><mrow><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow><mrow><msub><mrow><mi>r</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>r</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></msubsup><mo stretchy=\"false\">(</mo><mi>n</mi><mo stretchy=\"false\">)</mo><mo>=</mo><munder><mrow><mo>∑</mo></mrow><mrow><mfrac linethickness=\"0\"><mrow><msub><mrow><mi>l</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>l</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>l</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>∈</mo><mi>ℕ</mi></mrow><mrow><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>l</mi></mrow><mrow><mn>1</mn></mrow></msub><mo stretchy=\"false\">+</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>l</mi></mrow><mrow><mn>2</mn></mrow></msub><mo stretchy=\"false\">+</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>3</mn></mrow></msub><msub><mrow><mi>l</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>=</mo><mi>n</mi></mrow></mfrac></mrow></munder><msub><mrow><mi>σ</mi></mrow><mrow><msub><mrow><mi>r</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msub><mo stretchy=\"false\">(</mo><msub><mrow><mi>l</mi></mrow><mrow><mn>1</mn></mrow></msub><mo stretchy=\"false\">)</mo><msub><mrow><mi>σ</mi></mrow><mrow><msub><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msub><mo stretchy=\"false\">(</mo><msub><mrow><mi>l</mi></mrow><mrow><mn>2</mn></mrow></msub><mo stretchy=\"false\">)</mo><msub><mrow><mi>σ</mi></mrow><mrow><msub><mrow><mi>r</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></msub><mo stretchy=\"false\">(</mo><msub><mrow><mi>l</mi></mrow><mrow><mn>3</mn></mrow></msub><mo stretchy=\"false\">)</mo><mo>,</mo></mrow></math></span><span></span></disp-formula-group> for odd integers <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>r</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>r</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>≥</mo><mn>1</mn><mo>,</mo><mspace width=\"0.25em\"></mspace></math></span><span></span> and <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>,</mo><mi>n</mi><mo>∈</mo><mi>ℕ</mi></math></span><span></span>, where <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>σ</mi></mrow><mrow><mi>r</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>n</mi><mo stretchy=\"false\">)</mo></math></span><span></span> is the sum of the <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>r</mi></math></span><span></span>th powers of the positive divisors of <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi></math></span><span></span>. We consider four cases, namely (i) <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>r</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><msub><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><msub><mrow><mi>r</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>=</mo><mn>1</mn></math></span><span></span>, (ii) <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>r</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><msub><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><mn>1</mn></math></span><span></span>; <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>r</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>≥</mo><mn>3</mn></math></span><span></span> (iii) <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>r</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mn>1</mn></math></span><span></span>; <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>r</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>≥</mo><mn>3</mn></math></span><span></span> and (iv) <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>r</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>r</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>≥</mo><mn>3</mn></math></span><span></span>, and give explicit expressions for the respective convolution sums. We provide several examples of these convolution sums in each case and further use these formulas to obtain explicit formulas for the number of representations of a positive integer <span><math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi></math></span><span></span> by certain positive definite quadratic forms. The existing formulas for <span><math altimg=\"eq-00014.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub><mo stretchy=\"false\">(</mo><mi>n</mi><mo stretchy=\"false\">)</mo></math></span><span></span> (in [20]), <span><math altimg=\"eq-00015.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn></mrow></msub><mo stretchy=\"false\">(</mo><mi>n</mi><mo stretchy=\"false\">)</mo><mo>,</mo><msub><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>2</mn></mrow></msub><mo stretchy=\"false\">(</mo><mi>n</mi><mo stretchy=\"false\">)</mo><mo>,</mo><msub><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>4</mn></mrow></msub><mo stretchy=\"false\">(</mo><mi>n</mi><mo stretchy=\"false\">)</mo></math></span><span></span> (in [7]), <span><math altimg=\"eq-00016.gif\" display=\"inline\" overflow=\"scroll\"><msubsup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>1</mn></mrow><mrow><mn>1</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>3</mn></mrow></msubsup><mo stretchy=\"false\">(</mo><mi>n</mi><mo stretchy=\"false\">)</mo><mo>,</mo><msubsup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>3</mn></mrow><mrow><mn>1</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>3</mn></mrow></msubsup><mo stretchy=\"false\">(</mo><mi>n</mi><mo stretchy=\"false\">)</mo><mo>,</mo><msubsup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>3</mn></mrow><mrow><mn>1</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>3</mn></mrow></msubsup><mo stretchy=\"false\">(</mo><mi>n</mi><mo stretchy=\"false\">)</mo><mo>,</mo><msubsup><mrow><mi>W</mi></mrow><mrow><mn>3</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>1</mn></mrow><mrow><mn>1</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>3</mn></mrow></msubsup><mo stretchy=\"false\">(</mo><mi>n</mi><mo stretchy=\"false\">)</mo><mo>,</mo><msubsup><mrow><mi>W</mi></mrow><mrow><mn>3</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>1</mn></mrow><mrow><mn>1</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>3</mn></mrow></msubsup><mo stretchy=\"false\">(</mo><mi>n</mi><mo stretchy=\"false\">)</mo></math></span><span></span> (in [35]), <span><math altimg=\"eq-00017.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>W</mi></mrow><mrow><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></msub><mo stretchy=\"false\">(</mo><mi>n</mi><mo stretchy=\"false\">)</mo></math></span><span></span>, <span><math altimg=\"eq-00018.gif\" display=\"inline\" overflow=\"scroll\"><mstyle><mtext mathvariant=\"normal\">lcm</mtext></mstyle><mo stretchy=\"false\">(</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>3</mn></mrow></msub><mo stretchy=\"false\">)</mo><mo>≤</mo><mn>6</mn></math></span><span></span> (in [30]) and <span><math altimg=\"eq-00019.gif\" display=\"inline\" overflow=\"scroll\"><mstyle><mtext mathvariant=\"normal\">lcm</mtext></mstyle><mo stretchy=\"false\">(</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>3</mn></mrow></msub><mo stretchy=\"false\">)</mo><mo>=</mo><mn>7</mn><mo>,</mo><mn>8</mn><mo>,</mo><mn>9</mn></math></span><span></span> (in [31]), which were all obtained by using the theory of quasimodular forms, follow from our method.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1793042124500544","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we use the theory of modular forms and give a general method to obtain the convolution sums for odd integers and , where is the sum of the th powers of the positive divisors of . We consider four cases, namely (i) , (ii) ; (iii) ; and (iv) , and give explicit expressions for the respective convolution sums. We provide several examples of these convolution sums in each case and further use these formulas to obtain explicit formulas for the number of representations of a positive integer by certain positive definite quadratic forms. The existing formulas for (in [20]), (in [7]), (in [35]), , (in [30]) and (in [31]), which were all obtained by using the theory of quasimodular forms, follow from our method.
期刊介绍:
This journal publishes original research papers and review articles on all areas of Number Theory, including elementary number theory, analytic number theory, algebraic number theory, arithmetic algebraic geometry, geometry of numbers, diophantine equations, diophantine approximation, transcendental number theory, probabilistic number theory, modular forms, multiplicative number theory, additive number theory, partitions, and computational number theory.