{"title":"ζ(s)无零区域附近密集的零群","authors":"William D. Banks","doi":"10.1142/s1793042124500520","DOIUrl":null,"url":null,"abstract":"<p>The methods of Korobov and Vinogradov produce a zero-free region for the Riemann zeta function <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>ζ</mi><mo stretchy=\"false\">(</mo><mi>s</mi><mo stretchy=\"false\">)</mo></math></span><span></span> of the form <disp-formula-group><span><math altimg=\"eq-00004.gif\" display=\"block\" overflow=\"scroll\"><mrow><mi>σ</mi><mo>></mo><mn>1</mn><mo stretchy=\"false\">−</mo><mfrac><mrow><mi>c</mi></mrow><mrow><msup><mrow><mo stretchy=\"false\">(</mo><mo>log</mo><mi>τ</mi><mo stretchy=\"false\">)</mo></mrow><mrow><mn>2</mn><mo stretchy=\"false\">/</mo><mn>3</mn></mrow></msup><msup><mrow><mo stretchy=\"false\">(</mo><mo>log</mo><mo>log</mo><mi>τ</mi><mo stretchy=\"false\">)</mo></mrow><mrow><mn>1</mn><mo stretchy=\"false\">/</mo><mn>3</mn></mrow></msup></mrow></mfrac><mspace width=\"1em\"></mspace><mo stretchy=\"false\">(</mo><mi>τ</mi><mo>≔</mo><mo stretchy=\"false\">|</mo><mi>t</mi><mo stretchy=\"false\">|</mo><mo stretchy=\"false\">+</mo><mn>1</mn><mn>0</mn><mn>0</mn><mo stretchy=\"false\">)</mo><mo>.</mo></mrow></math></span><span></span></disp-formula-group> For many decades, the general shape of the zero-free region has not changed (although explicit known values for <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>c</mi></math></span><span></span> have improved over the years). In this paper, we show that if the zero-free region <i>cannot</i> be widened substantially, then there exist infinitely many distinct dense clusters of zeros of <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>ζ</mi><mo stretchy=\"false\">(</mo><mi>s</mi><mo stretchy=\"false\">)</mo></math></span><span></span> lying close to the edge of the zero-free region. Our proof provides specific information about the location of these clusters and the number of zeros contained in them. To prove the result, we introduce and apply a variant of the original method of de la Vallée Poussin combined with ideas of Turán to control the real parts of power sums. We also prove similar results for <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>L</mi></math></span><span></span>-functions associated to <i>nonquadratic</i> Dirichlet characters <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mi>χ</mi></math></span><span></span> modulo <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mi>q</mi><mo>≥</mo><mn>2</mn></math></span><span></span>.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":"51 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dense clusters of zeros near the zero-free region of ζ(s)\",\"authors\":\"William D. Banks\",\"doi\":\"10.1142/s1793042124500520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The methods of Korobov and Vinogradov produce a zero-free region for the Riemann zeta function <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>ζ</mi><mo stretchy=\\\"false\\\">(</mo><mi>s</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> of the form <disp-formula-group><span><math altimg=\\\"eq-00004.gif\\\" display=\\\"block\\\" overflow=\\\"scroll\\\"><mrow><mi>σ</mi><mo>></mo><mn>1</mn><mo stretchy=\\\"false\\\">−</mo><mfrac><mrow><mi>c</mi></mrow><mrow><msup><mrow><mo stretchy=\\\"false\\\">(</mo><mo>log</mo><mi>τ</mi><mo stretchy=\\\"false\\\">)</mo></mrow><mrow><mn>2</mn><mo stretchy=\\\"false\\\">/</mo><mn>3</mn></mrow></msup><msup><mrow><mo stretchy=\\\"false\\\">(</mo><mo>log</mo><mo>log</mo><mi>τ</mi><mo stretchy=\\\"false\\\">)</mo></mrow><mrow><mn>1</mn><mo stretchy=\\\"false\\\">/</mo><mn>3</mn></mrow></msup></mrow></mfrac><mspace width=\\\"1em\\\"></mspace><mo stretchy=\\\"false\\\">(</mo><mi>τ</mi><mo>≔</mo><mo stretchy=\\\"false\\\">|</mo><mi>t</mi><mo stretchy=\\\"false\\\">|</mo><mo stretchy=\\\"false\\\">+</mo><mn>1</mn><mn>0</mn><mn>0</mn><mo stretchy=\\\"false\\\">)</mo><mo>.</mo></mrow></math></span><span></span></disp-formula-group> For many decades, the general shape of the zero-free region has not changed (although explicit known values for <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>c</mi></math></span><span></span> have improved over the years). In this paper, we show that if the zero-free region <i>cannot</i> be widened substantially, then there exist infinitely many distinct dense clusters of zeros of <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>ζ</mi><mo stretchy=\\\"false\\\">(</mo><mi>s</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> lying close to the edge of the zero-free region. Our proof provides specific information about the location of these clusters and the number of zeros contained in them. To prove the result, we introduce and apply a variant of the original method of de la Vallée Poussin combined with ideas of Turán to control the real parts of power sums. We also prove similar results for <span><math altimg=\\\"eq-00007.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>L</mi></math></span><span></span>-functions associated to <i>nonquadratic</i> Dirichlet characters <span><math altimg=\\\"eq-00008.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>χ</mi></math></span><span></span> modulo <span><math altimg=\\\"eq-00009.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>q</mi><mo>≥</mo><mn>2</mn></math></span><span></span>.</p>\",\"PeriodicalId\":14293,\"journal\":{\"name\":\"International Journal of Number Theory\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793042124500520\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1793042124500520","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
科罗博夫和维诺格拉多夫的方法为黎曼zeta函数ζ(s) 得出了一个无零区域,其形式为 σ>1-c(logτ)2/3(loglogτ)1/3(τ≔|t|+100)。几十年来,无零区域的一般形状一直未变(尽管已知的明确 c 值多年来有所改进)。在本文中,我们证明了如果无零区域不能被大幅拓宽,那么就存在无限多个靠近无零区域边缘的ζ(s)零点密集簇。我们的证明提供了关于这些簇的位置和其中包含的零点数量的具体信息。为了证明这一结果,我们引入并应用了 de la Vallée Poussin 最初方法的变体,并结合图兰的思想来控制幂和的实部。我们还证明了与非二次迪里夏特字符 χ modulo q≥2 相关的 L 函数的类似结果。
Dense clusters of zeros near the zero-free region of ζ(s)
The methods of Korobov and Vinogradov produce a zero-free region for the Riemann zeta function of the form For many decades, the general shape of the zero-free region has not changed (although explicit known values for have improved over the years). In this paper, we show that if the zero-free region cannot be widened substantially, then there exist infinitely many distinct dense clusters of zeros of lying close to the edge of the zero-free region. Our proof provides specific information about the location of these clusters and the number of zeros contained in them. To prove the result, we introduce and apply a variant of the original method of de la Vallée Poussin combined with ideas of Turán to control the real parts of power sums. We also prove similar results for -functions associated to nonquadratic Dirichlet characters modulo .
期刊介绍:
This journal publishes original research papers and review articles on all areas of Number Theory, including elementary number theory, analytic number theory, algebraic number theory, arithmetic algebraic geometry, geometry of numbers, diophantine equations, diophantine approximation, transcendental number theory, probabilistic number theory, modular forms, multiplicative number theory, additive number theory, partitions, and computational number theory.