{"title":"Statistics for Iwasawa invariants of elliptic curves, II","authors":"Debanjana Kundu, Anwesh Ray","doi":"10.1142/s1793042124500556","DOIUrl":"https://doi.org/10.1142/s1793042124500556","url":null,"abstract":"<p>We study the average behavior of the Iwasawa invariants for Selmer groups of elliptic curves. These results lie at the intersection of arithmetic statistics and Iwasawa theory. We obtain lower bounds for the density of rational elliptic curves with prescribed Iwasawa invariants.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":"39 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140625163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Oscillations of Fourier coefficients of product of L-functions at integers in a sparse set","authors":"Babita, Mohit Tripathi, Lalit Vaishya","doi":"10.1142/s1793042124500854","DOIUrl":"https://doi.org/10.1142/s1793042124500854","url":null,"abstract":"<p>Let <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>f</mi></math></span><span></span> be a normalized Hecke eigenform of weight <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>k</mi></math></span><span></span> for the full modular group <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>S</mi><msub><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msub><mo stretchy=\"false\">(</mo><mi>ℤ</mi><mo stretchy=\"false\">)</mo></math></span><span></span>. In this paper, we obtain the asymptotic of higher moments of general divisor functions associated to the Fourier coefficients of Rankin–Selberg <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>L</mi></math></span><span></span>-functions <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>R</mi><mo stretchy=\"false\">(</mo><mi>s</mi><mo>,</mo><mi>f</mi><mo stretchy=\"false\">×</mo><mi>f</mi><mo stretchy=\"false\">)</mo></math></span><span></span>, supported at the integers represented by primitive integral positive-definite binary quadratic forms (reduced forms) of a fixed discriminant <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>D</mi><mo><</mo><mn>0</mn><mo>.</mo></math></span><span></span> We improve previous results in the case when the reduced form is given by <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mi mathvariant=\"cal\">𝒬</mi><mo stretchy=\"false\">(</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><mo stretchy=\"false\">)</mo><mo>=</mo><msubsup><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></msubsup><mo stretchy=\"false\">+</mo><msubsup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow><mrow><mn>2</mn></mrow></msubsup><mo>.</mo></math></span><span></span></p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":"79 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140599024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Double and triple character sums and gaps between the elements of subgroups of finite fields","authors":"Jiankang Wang, Zhefeng Xu","doi":"10.1142/s1793042124500842","DOIUrl":"https://doi.org/10.1142/s1793042124500842","url":null,"abstract":"<p>For an odd prime <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>p</mi></math></span><span></span>, let <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>𝔽</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span><span></span> be the finite field of <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>p</mi></math></span><span></span> elements. The main purpose of this paper is to establish new results on gaps between the elements of multiplicative subgroups of finite fields. For any <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>c</mi><mo>∈</mo><msubsup><mrow><mi>𝔽</mi></mrow><mrow><mi>p</mi></mrow><mrow><mo stretchy=\"false\">∗</mo></mrow></msubsup></math></span><span></span>, we also obtain new upper bounds of the following double character sum <disp-formula-group><span><math altimg=\"eq-00005.gif\" display=\"block\" overflow=\"scroll\"><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>c</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>χ</mi><mo>,</mo><msub><mrow><mi mathvariant=\"cal\">ℋ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi mathvariant=\"cal\">ℋ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo stretchy=\"false\">)</mo><mo>=</mo><munder><mrow><mo>∑</mo></mrow><mrow><msub><mrow><mi>h</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∈</mo><msub><mrow><mi mathvariant=\"cal\">ℋ</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></munder><munder><mrow><mo>∑</mo></mrow><mrow><msub><mrow><mi>h</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>∈</mo><msub><mrow><mi mathvariant=\"cal\">ℋ</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></munder><mi>χ</mi><mo stretchy=\"false\">(</mo><mi>a</mi><mo stretchy=\"false\">+</mo><mi>b</mi><msub><mrow><mi>h</mi></mrow><mrow><mn>1</mn></mrow></msub><mo stretchy=\"false\">+</mo><mi>c</mi><msub><mrow><mi>h</mi></mrow><mrow><mn>2</mn></mrow></msub><mo stretchy=\"false\">)</mo></mrow></math></span><span></span></disp-formula-group> and a triple character sum <disp-formula-group><span><math altimg=\"eq-00006.gif\" display=\"block\" overflow=\"scroll\"><mrow><msub><mrow><mi>S</mi></mrow><mrow><mi>χ</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><msub><mrow><mi mathvariant=\"cal\">ℋ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi mathvariant=\"cal\">ℋ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mi mathvariant=\"cal\">𝒩</mi><mo stretchy=\"false\">)</mo><mo>=</mo><munder><mrow><mo>∑</mo></mrow><mrow><mi>x</mi><mo>∈</mo><mi mathvariant=\"cal\">𝒩</mi></mrow></munder><munder><mrow><mo>∑</mo></mrow><mrow><msub><mrow><mi>h</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∈</mo><msub><mrow><mi mathvariant=\"cal\">ℋ</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></munder><munder><mrow><mo>∑</mo></mrow><mrow><msub><mrow><mi>h</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>∈</mo><msub><mrow><mi mathvariant=\"cal\">ℋ</mi>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":"14 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140599021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The transcendence of growth constants associated with polynomial recursions","authors":"Veekesh Kumar","doi":"10.1142/s1793042124500672","DOIUrl":"https://doi.org/10.1142/s1793042124500672","url":null,"abstract":"<p>Let <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>P</mi><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo><mo>:</mo><mo>=</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>d</mi></mrow></msub><msup><mrow><mi>x</mi></mrow><mrow><mi>d</mi></mrow></msup><mo stretchy=\"false\">+</mo><mo>⋯</mo><mo stretchy=\"false\">+</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><mi>ℚ</mi><mo stretchy=\"false\">[</mo><mi>x</mi><mo stretchy=\"false\">]</mo></math></span><span></span>, <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>a</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>></mo><mn>0</mn></math></span><span></span>, be a polynomial of degree <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>d</mi><mo>≥</mo><mn>2</mn></math></span><span></span>. Let <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">)</mo></math></span><span></span> be a sequence of integers satisfying <disp-formula-group><span><math altimg=\"eq-00005.gif\" display=\"block\" overflow=\"scroll\"><mrow><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi><mo stretchy=\"false\">+</mo><mn>1</mn></mrow></msub><mo>=</mo><mi>P</mi><mo stretchy=\"false\">(</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">)</mo><mspace width=\"1em\"></mspace><mstyle><mtext>for all </mtext></mstyle><mi>n</mi><mo>=</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mspace width=\"1em\"></mspace><mstyle><mtext>and</mtext></mstyle><mspace width=\"1em\"></mspace><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>→</mo><mi>∞</mi><mspace width=\"1em\"></mspace><mstyle><mtext>as </mtext></mstyle><mi>n</mi><mo>→</mo><mi>∞</mi><mo>.</mo></mrow></math></span><span></span></disp-formula-group></p><p>Set <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>α</mi><mo>:</mo><mo>=</mo><msub><mrow><mo>lim</mo></mrow><mrow><mi>n</mi><mo>→</mo><mi>∞</mi></mrow></msub><msubsup><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow><mrow><msup><mrow><mi>d</mi></mrow><mrow><mo stretchy=\"false\">−</mo><mi>n</mi></mrow></msup></mrow></msubsup></math></span><span></span>. Then, under the assumption <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><msubsup><mrow><mi>a</mi></mrow><mrow><mi>d</mi></mrow><mrow><mn>1</mn><mo stretchy=\"false\">/</mo><mo stretchy=\"false\">(</mo><mi>d</mi><mo stretchy=\"false\">−</mo><mn>1</mn><mo stretchy=\"false\">)</mo></mrow></msubsup><mo>∈</mo><mi>ℚ</mi></math></span><span></span>, in a recent result by [A. Dubickas, Transcendency of some constants related to integer sequences of polynomial iterations, <i>Ramanujan J.</i><b>57</b> (2022) 569–581], either <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mi>α</mi></math></span><span></span> is transcendental or <span><math altimg=\"eq-00009.","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":"300 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140599455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A note on Schmidt’s subspace type theorems for hypersurfaces in subgeneral position","authors":"Lei Shi, Qiming Yan","doi":"10.1142/s1793042124500490","DOIUrl":"https://doi.org/10.1142/s1793042124500490","url":null,"abstract":"<p>In this paper, motivated by Nochka weights and the replacing hypersurfaces technique, we give an improvement of Schmidt’s subspace type theorem for hypersurfaces which are located in subgeneral position.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":"32 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140599264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A new upper bound on Ruzsa’s numbers on the Erdős–Turán conjecture","authors":"Yuchen Ding, Lilu Zhao","doi":"10.1142/s179304212450074x","DOIUrl":"https://doi.org/10.1142/s179304212450074x","url":null,"abstract":"<p>In this paper, we show that the Ruzsa number <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>R</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span><span></span> is bounded by <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mn>1</mn><mn>9</mn><mn>2</mn></math></span><span></span> for any positive integer <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>m</mi></math></span><span></span>, which improves the prior bound <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>R</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>≤</mo><mn>2</mn><mn>8</mn><mn>8</mn></math></span><span></span> given by Chen in 2008.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":"8 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140599268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the solutions of some Lebesgue–Ramanujan–Nagell type equations","authors":"Elif Kızıldere Mutlu, Gökhan Soydan","doi":"10.1142/s1793042124500593","DOIUrl":"https://doi.org/10.1142/s1793042124500593","url":null,"abstract":"<p>Denote by <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>h</mi><mo>=</mo><mi>h</mi><mo stretchy=\"false\">(</mo><mo stretchy=\"false\">−</mo><mi>p</mi><mo stretchy=\"false\">)</mo></math></span><span></span> the class number of the imaginary quadratic field <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>ℚ</mi><mo stretchy=\"false\">(</mo><msqrt><mrow><mo stretchy=\"false\">−</mo><mi>p</mi></mrow></msqrt><mo stretchy=\"false\">)</mo></math></span><span></span> with <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>p</mi></math></span><span></span> prime. It is well known that <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>h</mi><mo>=</mo><mn>1</mn></math></span><span></span> for <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>p</mi><mo>∈</mo><mo stretchy=\"false\">{</mo><mn>3</mn><mo>,</mo><mn>7</mn><mo>,</mo><mn>1</mn><mn>1</mn><mo>,</mo><mn>1</mn><mn>9</mn><mo>,</mo><mn>4</mn><mn>3</mn><mo>,</mo><mn>6</mn><mn>7</mn><mo>,</mo><mn>1</mn><mn>6</mn><mn>3</mn><mo stretchy=\"false\">}</mo></math></span><span></span>. Recently, all the solutions of the Diophantine equation <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo stretchy=\"false\">+</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow></msup><mo>=</mo><mn>4</mn><msup><mrow><mi>y</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span><span></span> with <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>h</mi><mo>=</mo><mn>1</mn></math></span><span></span> were given by Chakraborty <i>et al</i>. in [Complete solutions of certain Lebesgue–Ramanujan–Nagell type equations, <i>Publ. Math. Debrecen</i><b>97</b>(3–4) (2020) 339–352]. In this paper, we study the Diophantine equation <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo stretchy=\"false\">+</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow></msup><mo>=</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>r</mi></mrow></msup><msup><mrow><mi>y</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span><span></span> in unknown integers <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>s</mi><mo>,</mo><mi>r</mi><mo>,</mo><mi>n</mi><mo stretchy=\"false\">)</mo><mo>,</mo></math></span><span></span> where <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mi>s</mi><mo>≥</mo><mn>0</mn></math></span><span></span>, <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mi>r</mi><mo>≥</mo><mn>3</mn></math></span><span></span>, <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi><mo>≥</mo><mn>3</mn></math></span><span></span>, <span><math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"><mi>h</mi><mo>∈</mo><mo st","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":"30 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140599270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the non-vanishing of Fourier coefficients of half-integral weight cuspforms","authors":"Jun-Hwi Min","doi":"10.1142/s1793042124500805","DOIUrl":"https://doi.org/10.1142/s1793042124500805","url":null,"abstract":"<p>We prove the best possible upper bounds of the gaps between non-vanishing Fourier coefficients of half-integral weight cuspforms. This improves the works of Balog–Ono and Thorner. We also show an asymptotic formula of central modular <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>L</mi></math></span><span></span>-values for short intervals.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":"34 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140599461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Subham Bhakta, Srilakshmi Krishnamoorthy, R. Muneeswaran
{"title":"Congruence classes for modular forms over small sets","authors":"Subham Bhakta, Srilakshmi Krishnamoorthy, R. Muneeswaran","doi":"10.1142/s1793042124500799","DOIUrl":"https://doi.org/10.1142/s1793042124500799","url":null,"abstract":"<p>Serre showed that for any integer <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>m</mi><mo>,</mo><mspace width=\"0.25em\"></mspace><mi>a</mi><mo stretchy=\"false\">(</mo><mi>n</mi><mo stretchy=\"false\">)</mo><mo>≡</mo><mn>0</mn><mspace width=\"0.3em\"></mspace><mo stretchy=\"false\">(</mo><mo>mod</mo><mspace width=\"0.3em\"></mspace><mi>m</mi><mo stretchy=\"false\">)</mo></math></span><span></span> for almost all <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi><mo>,</mo></math></span><span></span> where <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>a</mi><mo stretchy=\"false\">(</mo><mi>n</mi><mo stretchy=\"false\">)</mo></math></span><span></span> is the <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi><mstyle><mtext>th</mtext></mstyle></math></span><span></span> Fourier coefficient of any modular form with rational coefficients. In this paper, we consider a certain class of cuspforms and study <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>#</mi><msub><mrow><mo stretchy=\"false\">{</mo><mi>a</mi><mo stretchy=\"false\">(</mo><mi>n</mi><mo stretchy=\"false\">)</mo><mspace width=\"0.3em\"></mspace><mo stretchy=\"false\">(</mo><mo>mod</mo><mspace width=\"0.3em\"></mspace><mi>m</mi><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">}</mo></mrow><mrow><mi>n</mi><mo>≤</mo><mi>x</mi></mrow></msub></math></span><span></span> over the set of integers with <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>O</mi><mo stretchy=\"false\">(</mo><mn>1</mn><mo stretchy=\"false\">)</mo></math></span><span></span> many prime factors. Moreover, we show that any residue class <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>a</mi><mo>∈</mo><mi>ℤ</mi><mo stretchy=\"false\">/</mo><mi>m</mi><mi>ℤ</mi></math></span><span></span> can be written as the sum of at most 13 Fourier coefficients, which are polynomially bounded as a function of <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mi>m</mi><mo>.</mo></math></span><span></span></p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":"48 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140599462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Moments of Dirichlet L-functions to a fixed modulus over function fields","authors":"Peng Gao, Liangyi Zhao","doi":"10.1142/s1793042124500738","DOIUrl":"https://doi.org/10.1142/s1793042124500738","url":null,"abstract":"<p>In this paper, we establish the expected order of magnitude of the <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>k</mi></math></span><span></span>th-moment of central values of the family of Dirichlet <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>L</mi></math></span><span></span>-functions to a fixed prime modulus over function fields for all real <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>k</mi><mo>≥</mo><mn>0</mn></math></span><span></span>.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":"97 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140599262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}