{"title":"The transcendence of growth constants associated with polynomial recursions","authors":"Veekesh Kumar","doi":"10.1142/s1793042124500672","DOIUrl":null,"url":null,"abstract":"<p>Let <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>P</mi><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo><mo>:</mo><mo>=</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>d</mi></mrow></msub><msup><mrow><mi>x</mi></mrow><mrow><mi>d</mi></mrow></msup><mo stretchy=\"false\">+</mo><mo>⋯</mo><mo stretchy=\"false\">+</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><mi>ℚ</mi><mo stretchy=\"false\">[</mo><mi>x</mi><mo stretchy=\"false\">]</mo></math></span><span></span>, <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>a</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>></mo><mn>0</mn></math></span><span></span>, be a polynomial of degree <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>d</mi><mo>≥</mo><mn>2</mn></math></span><span></span>. Let <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">)</mo></math></span><span></span> be a sequence of integers satisfying <disp-formula-group><span><math altimg=\"eq-00005.gif\" display=\"block\" overflow=\"scroll\"><mrow><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi><mo stretchy=\"false\">+</mo><mn>1</mn></mrow></msub><mo>=</mo><mi>P</mi><mo stretchy=\"false\">(</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">)</mo><mspace width=\"1em\"></mspace><mstyle><mtext>for all </mtext></mstyle><mi>n</mi><mo>=</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mspace width=\"1em\"></mspace><mstyle><mtext>and</mtext></mstyle><mspace width=\"1em\"></mspace><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>→</mo><mi>∞</mi><mspace width=\"1em\"></mspace><mstyle><mtext>as </mtext></mstyle><mi>n</mi><mo>→</mo><mi>∞</mi><mo>.</mo></mrow></math></span><span></span></disp-formula-group></p><p>Set <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>α</mi><mo>:</mo><mo>=</mo><msub><mrow><mo>lim</mo></mrow><mrow><mi>n</mi><mo>→</mo><mi>∞</mi></mrow></msub><msubsup><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow><mrow><msup><mrow><mi>d</mi></mrow><mrow><mo stretchy=\"false\">−</mo><mi>n</mi></mrow></msup></mrow></msubsup></math></span><span></span>. Then, under the assumption <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><msubsup><mrow><mi>a</mi></mrow><mrow><mi>d</mi></mrow><mrow><mn>1</mn><mo stretchy=\"false\">/</mo><mo stretchy=\"false\">(</mo><mi>d</mi><mo stretchy=\"false\">−</mo><mn>1</mn><mo stretchy=\"false\">)</mo></mrow></msubsup><mo>∈</mo><mi>ℚ</mi></math></span><span></span>, in a recent result by [A. Dubickas, Transcendency of some constants related to integer sequences of polynomial iterations, <i>Ramanujan J.</i><b>57</b> (2022) 569–581], either <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mi>α</mi></math></span><span></span> is transcendental or <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mi>α</mi></math></span><span></span> can be an integer or a quadratic Pisot unit with <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>α</mi></mrow><mrow><mo stretchy=\"false\">−</mo><mn>1</mn></mrow></msup></math></span><span></span> being its conjugate over <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mi>ℚ</mi></math></span><span></span>. In this paper, we study the nature of such <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><mi>α</mi></math></span><span></span> without the assumption that <span><math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"><msubsup><mrow><mi>a</mi></mrow><mrow><mi>d</mi></mrow><mrow><mn>1</mn><mo stretchy=\"false\">/</mo><mo stretchy=\"false\">(</mo><mi>d</mi><mo stretchy=\"false\">−</mo><mn>1</mn><mo stretchy=\"false\">)</mo></mrow></msubsup></math></span><span></span> is in <span><math altimg=\"eq-00014.gif\" display=\"inline\" overflow=\"scroll\"><mi>ℚ</mi></math></span><span></span>, and we prove that either the number <span><math altimg=\"eq-00015.gif\" display=\"inline\" overflow=\"scroll\"><mi>α</mi></math></span><span></span> is transcendental, or <span><math altimg=\"eq-00016.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>α</mi></mrow><mrow><mi>h</mi></mrow></msup></math></span><span></span> is a Pisot number with <span><math altimg=\"eq-00017.gif\" display=\"inline\" overflow=\"scroll\"><mi>h</mi></math></span><span></span> being the order of the torsion subgroup of the Galois closure of the number field <span><math altimg=\"eq-00018.gif\" display=\"inline\" overflow=\"scroll\"><mi>ℚ</mi><mfenced close=\")\" open=\"(\" separators=\"\"><mrow><mi>α</mi><mo>,</mo><msubsup><mrow><mi>a</mi></mrow><mrow><mi>d</mi></mrow><mrow><mo stretchy=\"false\">−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>d</mi><mo stretchy=\"false\">−</mo><mn>1</mn></mrow></mfrac></mrow></msubsup></mrow></mfenced></math></span><span></span>.</p><p>Other results presented in this paper investigate the solutions of the inequality <span><math altimg=\"eq-00019.gif\" display=\"inline\" overflow=\"scroll\"><mo>|</mo><mo>|</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub><msubsup><mrow><mi>α</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup><mo stretchy=\"false\">+</mo><mo>⋯</mo><mo stretchy=\"false\">+</mo><msub><mrow><mi>q</mi></mrow><mrow><mi>k</mi></mrow></msub><msubsup><mrow><mi>α</mi></mrow><mrow><mi>k</mi></mrow><mrow><mi>n</mi></mrow></msubsup><mo stretchy=\"false\">+</mo><mi>β</mi><mo>|</mo><mo>|</mo><mo><</mo><msup><mrow><mi>𝜃</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span><span></span> in <span><math altimg=\"eq-00020.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>q</mi></mrow><mrow><mi>k</mi></mrow></msub><mo stretchy=\"false\">)</mo><mo>∈</mo><mi>ℕ</mi><mo stretchy=\"false\">×</mo><msup><mrow><mo stretchy=\"false\">(</mo><msup><mrow><mi>K</mi></mrow><mrow><mo stretchy=\"false\">×</mo></mrow></msup><mo stretchy=\"false\">)</mo></mrow><mrow><mi>k</mi></mrow></msup></math></span><span></span>, considering whether <span><math altimg=\"eq-00021.gif\" display=\"inline\" overflow=\"scroll\"><mi>β</mi></math></span><span></span> is rational or irrational. Here, <span><math altimg=\"eq-00022.gif\" display=\"inline\" overflow=\"scroll\"><mi>K</mi></math></span><span></span> represents a number field, and <span><math altimg=\"eq-00023.gif\" display=\"inline\" overflow=\"scroll\"><mi>𝜃</mi><mo>∈</mo><mo stretchy=\"false\">(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo stretchy=\"false\">)</mo></math></span><span></span>. The notation <span><math altimg=\"eq-00024.gif\" display=\"inline\" overflow=\"scroll\"><mo>|</mo><mo>|</mo><mi>x</mi><mo>|</mo><mo>|</mo></math></span><span></span> denotes the distance between <span><math altimg=\"eq-00025.gif\" display=\"inline\" overflow=\"scroll\"><mi>x</mi></math></span><span></span> and its nearest integer in <span><math altimg=\"eq-00026.gif\" display=\"inline\" overflow=\"scroll\"><mi>ℤ</mi></math></span><span></span>.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1793042124500672","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let , , be a polynomial of degree . Let be a sequence of integers satisfying
Set . Then, under the assumption , in a recent result by [A. Dubickas, Transcendency of some constants related to integer sequences of polynomial iterations, Ramanujan J.57 (2022) 569–581], either is transcendental or can be an integer or a quadratic Pisot unit with being its conjugate over . In this paper, we study the nature of such without the assumption that is in , and we prove that either the number is transcendental, or is a Pisot number with being the order of the torsion subgroup of the Galois closure of the number field .
Other results presented in this paper investigate the solutions of the inequality in , considering whether is rational or irrational. Here, represents a number field, and . The notation denotes the distance between and its nearest integer in .
期刊介绍:
This journal publishes original research papers and review articles on all areas of Number Theory, including elementary number theory, analytic number theory, algebraic number theory, arithmetic algebraic geometry, geometry of numbers, diophantine equations, diophantine approximation, transcendental number theory, probabilistic number theory, modular forms, multiplicative number theory, additive number theory, partitions, and computational number theory.