论某些勒贝格-拉马努扬-纳格尔型方程的解

IF 0.5 3区 数学 Q3 MATHEMATICS
Elif Kızıldere Mutlu, Gökhan Soydan
{"title":"论某些勒贝格-拉马努扬-纳格尔型方程的解","authors":"Elif Kızıldere Mutlu, Gökhan Soydan","doi":"10.1142/s1793042124500593","DOIUrl":null,"url":null,"abstract":"<p>Denote by <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>h</mi><mo>=</mo><mi>h</mi><mo stretchy=\"false\">(</mo><mo stretchy=\"false\">−</mo><mi>p</mi><mo stretchy=\"false\">)</mo></math></span><span></span> the class number of the imaginary quadratic field <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>ℚ</mi><mo stretchy=\"false\">(</mo><msqrt><mrow><mo stretchy=\"false\">−</mo><mi>p</mi></mrow></msqrt><mo stretchy=\"false\">)</mo></math></span><span></span> with <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>p</mi></math></span><span></span> prime. It is well known that <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>h</mi><mo>=</mo><mn>1</mn></math></span><span></span> for <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>p</mi><mo>∈</mo><mo stretchy=\"false\">{</mo><mn>3</mn><mo>,</mo><mn>7</mn><mo>,</mo><mn>1</mn><mn>1</mn><mo>,</mo><mn>1</mn><mn>9</mn><mo>,</mo><mn>4</mn><mn>3</mn><mo>,</mo><mn>6</mn><mn>7</mn><mo>,</mo><mn>1</mn><mn>6</mn><mn>3</mn><mo stretchy=\"false\">}</mo></math></span><span></span>. Recently, all the solutions of the Diophantine equation <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo stretchy=\"false\">+</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow></msup><mo>=</mo><mn>4</mn><msup><mrow><mi>y</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span><span></span> with <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>h</mi><mo>=</mo><mn>1</mn></math></span><span></span> were given by Chakraborty <i>et al</i>. in [Complete solutions of certain Lebesgue–Ramanujan–Nagell type equations, <i>Publ. Math. Debrecen</i><b>97</b>(3–4) (2020) 339–352]. In this paper, we study the Diophantine equation <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo stretchy=\"false\">+</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow></msup><mo>=</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>r</mi></mrow></msup><msup><mrow><mi>y</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span><span></span> in unknown integers <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>s</mi><mo>,</mo><mi>r</mi><mo>,</mo><mi>n</mi><mo stretchy=\"false\">)</mo><mo>,</mo></math></span><span></span> where <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mi>s</mi><mo>≥</mo><mn>0</mn></math></span><span></span>, <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mi>r</mi><mo>≥</mo><mn>3</mn></math></span><span></span>, <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi><mo>≥</mo><mn>3</mn></math></span><span></span>, <span><math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"><mi>h</mi><mo>∈</mo><mo stretchy=\"false\">{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo stretchy=\"false\">}</mo></math></span><span></span> and <span><math altimg=\"eq-00014.gif\" display=\"inline\" overflow=\"scroll\"><mo>gcd</mo><mo stretchy=\"false\">(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo stretchy=\"false\">)</mo><mo>=</mo><mn>1</mn></math></span><span></span>. To do this, we use the known results from the modularity of Galois representations associated with Frey–Hellegoaurch elliptic curves, the symplectic method and elementary methods of classical algebraic number theory. The aim of this paper is to extend the above results of Chakraborty <i>et al</i>.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the solutions of some Lebesgue–Ramanujan–Nagell type equations\",\"authors\":\"Elif Kızıldere Mutlu, Gökhan Soydan\",\"doi\":\"10.1142/s1793042124500593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Denote by <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>h</mi><mo>=</mo><mi>h</mi><mo stretchy=\\\"false\\\">(</mo><mo stretchy=\\\"false\\\">−</mo><mi>p</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> the class number of the imaginary quadratic field <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>ℚ</mi><mo stretchy=\\\"false\\\">(</mo><msqrt><mrow><mo stretchy=\\\"false\\\">−</mo><mi>p</mi></mrow></msqrt><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> with <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>p</mi></math></span><span></span> prime. It is well known that <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>h</mi><mo>=</mo><mn>1</mn></math></span><span></span> for <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>p</mi><mo>∈</mo><mo stretchy=\\\"false\\\">{</mo><mn>3</mn><mo>,</mo><mn>7</mn><mo>,</mo><mn>1</mn><mn>1</mn><mo>,</mo><mn>1</mn><mn>9</mn><mo>,</mo><mn>4</mn><mn>3</mn><mo>,</mo><mn>6</mn><mn>7</mn><mo>,</mo><mn>1</mn><mn>6</mn><mn>3</mn><mo stretchy=\\\"false\\\">}</mo></math></span><span></span>. Recently, all the solutions of the Diophantine equation <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo stretchy=\\\"false\\\">+</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow></msup><mo>=</mo><mn>4</mn><msup><mrow><mi>y</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span><span></span> with <span><math altimg=\\\"eq-00007.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>h</mi><mo>=</mo><mn>1</mn></math></span><span></span> were given by Chakraborty <i>et al</i>. in [Complete solutions of certain Lebesgue–Ramanujan–Nagell type equations, <i>Publ. Math. Debrecen</i><b>97</b>(3–4) (2020) 339–352]. In this paper, we study the Diophantine equation <span><math altimg=\\\"eq-00008.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo stretchy=\\\"false\\\">+</mo><msup><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow></msup><mo>=</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>r</mi></mrow></msup><msup><mrow><mi>y</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span><span></span> in unknown integers <span><math altimg=\\\"eq-00009.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo stretchy=\\\"false\\\">(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>,</mo><mi>s</mi><mo>,</mo><mi>r</mi><mo>,</mo><mi>n</mi><mo stretchy=\\\"false\\\">)</mo><mo>,</mo></math></span><span></span> where <span><math altimg=\\\"eq-00010.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>s</mi><mo>≥</mo><mn>0</mn></math></span><span></span>, <span><math altimg=\\\"eq-00011.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>r</mi><mo>≥</mo><mn>3</mn></math></span><span></span>, <span><math altimg=\\\"eq-00012.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>n</mi><mo>≥</mo><mn>3</mn></math></span><span></span>, <span><math altimg=\\\"eq-00013.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>h</mi><mo>∈</mo><mo stretchy=\\\"false\\\">{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo stretchy=\\\"false\\\">}</mo></math></span><span></span> and <span><math altimg=\\\"eq-00014.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo>gcd</mo><mo stretchy=\\\"false\\\">(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo stretchy=\\\"false\\\">)</mo><mo>=</mo><mn>1</mn></math></span><span></span>. To do this, we use the known results from the modularity of Galois representations associated with Frey–Hellegoaurch elliptic curves, the symplectic method and elementary methods of classical algebraic number theory. The aim of this paper is to extend the above results of Chakraborty <i>et al</i>.</p>\",\"PeriodicalId\":14293,\"journal\":{\"name\":\"International Journal of Number Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793042124500593\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1793042124500593","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

用 h=h(-p) 表示 p 为素数的虚二次型域ℚ(-p) 的类数。众所周知,对于 p∈{3,7,11,19,43,67,163},h=1。最近,Chakraborty 等人在 [Complete solutions of certain Lebesgue-Ramanujan-Nagell type equations, Publ.Math.Debrecen97(3-4) (2020) 339-352] 中给出。本文研究未知整数 (x,y,s,r,n) 中的二叉方程 x2+ps=2ryn,其中 s≥0,r≥3,n≥3,h∈{1,2,3} 和 gcd(x,y)=1。为此,我们使用了与弗雷-赫勒高椭圆曲线相关的伽罗瓦表示的模块性、交映方法和经典代数数论的基本方法的已知结果。本文的目的是扩展 Chakraborty 等人的上述结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the solutions of some Lebesgue–Ramanujan–Nagell type equations

Denote by h=h(p) the class number of the imaginary quadratic field (p) with p prime. It is well known that h=1 for p{3,7,11,19,43,67,163}. Recently, all the solutions of the Diophantine equation x2+ps=4yn with h=1 were given by Chakraborty et al. in [Complete solutions of certain Lebesgue–Ramanujan–Nagell type equations, Publ. Math. Debrecen97(3–4) (2020) 339–352]. In this paper, we study the Diophantine equation x2+ps=2ryn in unknown integers (x,y,s,r,n), where s0, r3, n3, h{1,2,3} and gcd(x,y)=1. To do this, we use the known results from the modularity of Galois representations associated with Frey–Hellegoaurch elliptic curves, the symplectic method and elementary methods of classical algebraic number theory. The aim of this paper is to extend the above results of Chakraborty et al.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
14.30%
发文量
97
审稿时长
4-8 weeks
期刊介绍: This journal publishes original research papers and review articles on all areas of Number Theory, including elementary number theory, analytic number theory, algebraic number theory, arithmetic algebraic geometry, geometry of numbers, diophantine equations, diophantine approximation, transcendental number theory, probabilistic number theory, modular forms, multiplicative number theory, additive number theory, partitions, and computational number theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信