Congruence classes for modular forms over small sets

IF 0.5 3区 数学 Q3 MATHEMATICS
Subham Bhakta, Srilakshmi Krishnamoorthy, R. Muneeswaran
{"title":"Congruence classes for modular forms over small sets","authors":"Subham Bhakta, Srilakshmi Krishnamoorthy, R. Muneeswaran","doi":"10.1142/s1793042124500799","DOIUrl":null,"url":null,"abstract":"<p>Serre showed that for any integer <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>m</mi><mo>,</mo><mspace width=\"0.25em\"></mspace><mi>a</mi><mo stretchy=\"false\">(</mo><mi>n</mi><mo stretchy=\"false\">)</mo><mo>≡</mo><mn>0</mn><mspace width=\"0.3em\"></mspace><mo stretchy=\"false\">(</mo><mo>mod</mo><mspace width=\"0.3em\"></mspace><mi>m</mi><mo stretchy=\"false\">)</mo></math></span><span></span> for almost all <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi><mo>,</mo></math></span><span></span> where <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>a</mi><mo stretchy=\"false\">(</mo><mi>n</mi><mo stretchy=\"false\">)</mo></math></span><span></span> is the <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi><mstyle><mtext>th</mtext></mstyle></math></span><span></span> Fourier coefficient of any modular form with rational coefficients. In this paper, we consider a certain class of cuspforms and study <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>#</mi><msub><mrow><mo stretchy=\"false\">{</mo><mi>a</mi><mo stretchy=\"false\">(</mo><mi>n</mi><mo stretchy=\"false\">)</mo><mspace width=\"0.3em\"></mspace><mo stretchy=\"false\">(</mo><mo>mod</mo><mspace width=\"0.3em\"></mspace><mi>m</mi><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">}</mo></mrow><mrow><mi>n</mi><mo>≤</mo><mi>x</mi></mrow></msub></math></span><span></span> over the set of integers with <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>O</mi><mo stretchy=\"false\">(</mo><mn>1</mn><mo stretchy=\"false\">)</mo></math></span><span></span> many prime factors. Moreover, we show that any residue class <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>a</mi><mo>∈</mo><mi>ℤ</mi><mo stretchy=\"false\">/</mo><mi>m</mi><mi>ℤ</mi></math></span><span></span> can be written as the sum of at most 13 Fourier coefficients, which are polynomially bounded as a function of <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mi>m</mi><mo>.</mo></math></span><span></span></p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1793042124500799","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Serre showed that for any integer m,a(n)0(modm) for almost all n, where a(n) is the nth Fourier coefficient of any modular form with rational coefficients. In this paper, we consider a certain class of cuspforms and study #{a(n)(modm)}nx over the set of integers with O(1) many prime factors. Moreover, we show that any residue class a/m can be written as the sum of at most 13 Fourier coefficients, which are polynomially bounded as a function of m.

小集合上模态的协整类
塞雷证明,对于任意整数 m,几乎所有 n 的 a(n)≡0(modm),其中 a(n) 是任意有理系数模形式的第 n 个傅里叶系数。在本文中,我们考虑了某类余弦形式,并研究了在具有 O(1) 多质因数的整数集合上 #{a(n)(modm)}n≤x 的问题。此外,我们还证明了任何残差类 a∈ℤ/mℤ 都可以写成最多 13 个傅里叶系数之和,而这些系数作为 m 的函数是多项式有界的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
14.30%
发文量
97
审稿时长
4-8 weeks
期刊介绍: This journal publishes original research papers and review articles on all areas of Number Theory, including elementary number theory, analytic number theory, algebraic number theory, arithmetic algebraic geometry, geometry of numbers, diophantine equations, diophantine approximation, transcendental number theory, probabilistic number theory, modular forms, multiplicative number theory, additive number theory, partitions, and computational number theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信