与多项式递推相关的增长常数的超越性

IF 0.5 3区 数学 Q3 MATHEMATICS
Veekesh Kumar
{"title":"与多项式递推相关的增长常数的超越性","authors":"Veekesh Kumar","doi":"10.1142/s1793042124500672","DOIUrl":null,"url":null,"abstract":"<p>Let <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>P</mi><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo><mo>:</mo><mo>=</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>d</mi></mrow></msub><msup><mrow><mi>x</mi></mrow><mrow><mi>d</mi></mrow></msup><mo stretchy=\"false\">+</mo><mo>⋯</mo><mo stretchy=\"false\">+</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><mi>ℚ</mi><mo stretchy=\"false\">[</mo><mi>x</mi><mo stretchy=\"false\">]</mo></math></span><span></span>, <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>a</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>&gt;</mo><mn>0</mn></math></span><span></span>, be a polynomial of degree <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>d</mi><mo>≥</mo><mn>2</mn></math></span><span></span>. Let <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">)</mo></math></span><span></span> be a sequence of integers satisfying <disp-formula-group><span><math altimg=\"eq-00005.gif\" display=\"block\" overflow=\"scroll\"><mrow><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi><mo stretchy=\"false\">+</mo><mn>1</mn></mrow></msub><mo>=</mo><mi>P</mi><mo stretchy=\"false\">(</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">)</mo><mspace width=\"1em\"></mspace><mstyle><mtext>for all </mtext></mstyle><mi>n</mi><mo>=</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mspace width=\"1em\"></mspace><mstyle><mtext>and</mtext></mstyle><mspace width=\"1em\"></mspace><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>→</mo><mi>∞</mi><mspace width=\"1em\"></mspace><mstyle><mtext>as </mtext></mstyle><mi>n</mi><mo>→</mo><mi>∞</mi><mo>.</mo></mrow></math></span><span></span></disp-formula-group></p><p>Set <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>α</mi><mo>:</mo><mo>=</mo><msub><mrow><mo>lim</mo></mrow><mrow><mi>n</mi><mo>→</mo><mi>∞</mi></mrow></msub><msubsup><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow><mrow><msup><mrow><mi>d</mi></mrow><mrow><mo stretchy=\"false\">−</mo><mi>n</mi></mrow></msup></mrow></msubsup></math></span><span></span>. Then, under the assumption <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><msubsup><mrow><mi>a</mi></mrow><mrow><mi>d</mi></mrow><mrow><mn>1</mn><mo stretchy=\"false\">/</mo><mo stretchy=\"false\">(</mo><mi>d</mi><mo stretchy=\"false\">−</mo><mn>1</mn><mo stretchy=\"false\">)</mo></mrow></msubsup><mo>∈</mo><mi>ℚ</mi></math></span><span></span>, in a recent result by [A. Dubickas, Transcendency of some constants related to integer sequences of polynomial iterations, <i>Ramanujan J.</i><b>57</b> (2022) 569–581], either <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mi>α</mi></math></span><span></span> is transcendental or <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mi>α</mi></math></span><span></span> can be an integer or a quadratic Pisot unit with <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>α</mi></mrow><mrow><mo stretchy=\"false\">−</mo><mn>1</mn></mrow></msup></math></span><span></span> being its conjugate over <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mi>ℚ</mi></math></span><span></span>. In this paper, we study the nature of such <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><mi>α</mi></math></span><span></span> without the assumption that <span><math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"><msubsup><mrow><mi>a</mi></mrow><mrow><mi>d</mi></mrow><mrow><mn>1</mn><mo stretchy=\"false\">/</mo><mo stretchy=\"false\">(</mo><mi>d</mi><mo stretchy=\"false\">−</mo><mn>1</mn><mo stretchy=\"false\">)</mo></mrow></msubsup></math></span><span></span> is in <span><math altimg=\"eq-00014.gif\" display=\"inline\" overflow=\"scroll\"><mi>ℚ</mi></math></span><span></span>, and we prove that either the number <span><math altimg=\"eq-00015.gif\" display=\"inline\" overflow=\"scroll\"><mi>α</mi></math></span><span></span> is transcendental, or <span><math altimg=\"eq-00016.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>α</mi></mrow><mrow><mi>h</mi></mrow></msup></math></span><span></span> is a Pisot number with <span><math altimg=\"eq-00017.gif\" display=\"inline\" overflow=\"scroll\"><mi>h</mi></math></span><span></span> being the order of the torsion subgroup of the Galois closure of the number field <span><math altimg=\"eq-00018.gif\" display=\"inline\" overflow=\"scroll\"><mi>ℚ</mi><mfenced close=\")\" open=\"(\" separators=\"\"><mrow><mi>α</mi><mo>,</mo><msubsup><mrow><mi>a</mi></mrow><mrow><mi>d</mi></mrow><mrow><mo stretchy=\"false\">−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>d</mi><mo stretchy=\"false\">−</mo><mn>1</mn></mrow></mfrac></mrow></msubsup></mrow></mfenced></math></span><span></span>.</p><p>Other results presented in this paper investigate the solutions of the inequality <span><math altimg=\"eq-00019.gif\" display=\"inline\" overflow=\"scroll\"><mo>|</mo><mo>|</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub><msubsup><mrow><mi>α</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup><mo stretchy=\"false\">+</mo><mo>⋯</mo><mo stretchy=\"false\">+</mo><msub><mrow><mi>q</mi></mrow><mrow><mi>k</mi></mrow></msub><msubsup><mrow><mi>α</mi></mrow><mrow><mi>k</mi></mrow><mrow><mi>n</mi></mrow></msubsup><mo stretchy=\"false\">+</mo><mi>β</mi><mo>|</mo><mo>|</mo><mo>&lt;</mo><msup><mrow><mi>𝜃</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span><span></span> in <span><math altimg=\"eq-00020.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>q</mi></mrow><mrow><mi>k</mi></mrow></msub><mo stretchy=\"false\">)</mo><mo>∈</mo><mi>ℕ</mi><mo stretchy=\"false\">×</mo><msup><mrow><mo stretchy=\"false\">(</mo><msup><mrow><mi>K</mi></mrow><mrow><mo stretchy=\"false\">×</mo></mrow></msup><mo stretchy=\"false\">)</mo></mrow><mrow><mi>k</mi></mrow></msup></math></span><span></span>, considering whether <span><math altimg=\"eq-00021.gif\" display=\"inline\" overflow=\"scroll\"><mi>β</mi></math></span><span></span> is rational or irrational. Here, <span><math altimg=\"eq-00022.gif\" display=\"inline\" overflow=\"scroll\"><mi>K</mi></math></span><span></span> represents a number field, and <span><math altimg=\"eq-00023.gif\" display=\"inline\" overflow=\"scroll\"><mi>𝜃</mi><mo>∈</mo><mo stretchy=\"false\">(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo stretchy=\"false\">)</mo></math></span><span></span>. The notation <span><math altimg=\"eq-00024.gif\" display=\"inline\" overflow=\"scroll\"><mo>|</mo><mo>|</mo><mi>x</mi><mo>|</mo><mo>|</mo></math></span><span></span> denotes the distance between <span><math altimg=\"eq-00025.gif\" display=\"inline\" overflow=\"scroll\"><mi>x</mi></math></span><span></span> and its nearest integer in <span><math altimg=\"eq-00026.gif\" display=\"inline\" overflow=\"scroll\"><mi>ℤ</mi></math></span><span></span>.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The transcendence of growth constants associated with polynomial recursions\",\"authors\":\"Veekesh Kumar\",\"doi\":\"10.1142/s1793042124500672\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>P</mi><mo stretchy=\\\"false\\\">(</mo><mi>x</mi><mo stretchy=\\\"false\\\">)</mo><mo>:</mo><mo>=</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>d</mi></mrow></msub><msup><mrow><mi>x</mi></mrow><mrow><mi>d</mi></mrow></msup><mo stretchy=\\\"false\\\">+</mo><mo>⋯</mo><mo stretchy=\\\"false\\\">+</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><mi>ℚ</mi><mo stretchy=\\\"false\\\">[</mo><mi>x</mi><mo stretchy=\\\"false\\\">]</mo></math></span><span></span>, <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>a</mi></mrow><mrow><mi>d</mi></mrow></msub><mo>&gt;</mo><mn>0</mn></math></span><span></span>, be a polynomial of degree <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>d</mi><mo>≥</mo><mn>2</mn></math></span><span></span>. Let <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo stretchy=\\\"false\\\">(</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> be a sequence of integers satisfying <disp-formula-group><span><math altimg=\\\"eq-00005.gif\\\" display=\\\"block\\\" overflow=\\\"scroll\\\"><mrow><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi><mo stretchy=\\\"false\\\">+</mo><mn>1</mn></mrow></msub><mo>=</mo><mi>P</mi><mo stretchy=\\\"false\\\">(</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\\\"false\\\">)</mo><mspace width=\\\"1em\\\"></mspace><mstyle><mtext>for all </mtext></mstyle><mi>n</mi><mo>=</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mspace width=\\\"1em\\\"></mspace><mstyle><mtext>and</mtext></mstyle><mspace width=\\\"1em\\\"></mspace><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>→</mo><mi>∞</mi><mspace width=\\\"1em\\\"></mspace><mstyle><mtext>as </mtext></mstyle><mi>n</mi><mo>→</mo><mi>∞</mi><mo>.</mo></mrow></math></span><span></span></disp-formula-group></p><p>Set <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>α</mi><mo>:</mo><mo>=</mo><msub><mrow><mo>lim</mo></mrow><mrow><mi>n</mi><mo>→</mo><mi>∞</mi></mrow></msub><msubsup><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow><mrow><msup><mrow><mi>d</mi></mrow><mrow><mo stretchy=\\\"false\\\">−</mo><mi>n</mi></mrow></msup></mrow></msubsup></math></span><span></span>. Then, under the assumption <span><math altimg=\\\"eq-00007.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msubsup><mrow><mi>a</mi></mrow><mrow><mi>d</mi></mrow><mrow><mn>1</mn><mo stretchy=\\\"false\\\">/</mo><mo stretchy=\\\"false\\\">(</mo><mi>d</mi><mo stretchy=\\\"false\\\">−</mo><mn>1</mn><mo stretchy=\\\"false\\\">)</mo></mrow></msubsup><mo>∈</mo><mi>ℚ</mi></math></span><span></span>, in a recent result by [A. Dubickas, Transcendency of some constants related to integer sequences of polynomial iterations, <i>Ramanujan J.</i><b>57</b> (2022) 569–581], either <span><math altimg=\\\"eq-00008.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>α</mi></math></span><span></span> is transcendental or <span><math altimg=\\\"eq-00009.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>α</mi></math></span><span></span> can be an integer or a quadratic Pisot unit with <span><math altimg=\\\"eq-00010.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>α</mi></mrow><mrow><mo stretchy=\\\"false\\\">−</mo><mn>1</mn></mrow></msup></math></span><span></span> being its conjugate over <span><math altimg=\\\"eq-00011.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>ℚ</mi></math></span><span></span>. In this paper, we study the nature of such <span><math altimg=\\\"eq-00012.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>α</mi></math></span><span></span> without the assumption that <span><math altimg=\\\"eq-00013.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msubsup><mrow><mi>a</mi></mrow><mrow><mi>d</mi></mrow><mrow><mn>1</mn><mo stretchy=\\\"false\\\">/</mo><mo stretchy=\\\"false\\\">(</mo><mi>d</mi><mo stretchy=\\\"false\\\">−</mo><mn>1</mn><mo stretchy=\\\"false\\\">)</mo></mrow></msubsup></math></span><span></span> is in <span><math altimg=\\\"eq-00014.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>ℚ</mi></math></span><span></span>, and we prove that either the number <span><math altimg=\\\"eq-00015.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>α</mi></math></span><span></span> is transcendental, or <span><math altimg=\\\"eq-00016.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>α</mi></mrow><mrow><mi>h</mi></mrow></msup></math></span><span></span> is a Pisot number with <span><math altimg=\\\"eq-00017.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>h</mi></math></span><span></span> being the order of the torsion subgroup of the Galois closure of the number field <span><math altimg=\\\"eq-00018.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>ℚ</mi><mfenced close=\\\")\\\" open=\\\"(\\\" separators=\\\"\\\"><mrow><mi>α</mi><mo>,</mo><msubsup><mrow><mi>a</mi></mrow><mrow><mi>d</mi></mrow><mrow><mo stretchy=\\\"false\\\">−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>d</mi><mo stretchy=\\\"false\\\">−</mo><mn>1</mn></mrow></mfrac></mrow></msubsup></mrow></mfenced></math></span><span></span>.</p><p>Other results presented in this paper investigate the solutions of the inequality <span><math altimg=\\\"eq-00019.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo>|</mo><mo>|</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub><msubsup><mrow><mi>α</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup><mo stretchy=\\\"false\\\">+</mo><mo>⋯</mo><mo stretchy=\\\"false\\\">+</mo><msub><mrow><mi>q</mi></mrow><mrow><mi>k</mi></mrow></msub><msubsup><mrow><mi>α</mi></mrow><mrow><mi>k</mi></mrow><mrow><mi>n</mi></mrow></msubsup><mo stretchy=\\\"false\\\">+</mo><mi>β</mi><mo>|</mo><mo>|</mo><mo>&lt;</mo><msup><mrow><mi>𝜃</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span><span></span> in <span><math altimg=\\\"eq-00020.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo stretchy=\\\"false\\\">(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>q</mi></mrow><mrow><mi>k</mi></mrow></msub><mo stretchy=\\\"false\\\">)</mo><mo>∈</mo><mi>ℕ</mi><mo stretchy=\\\"false\\\">×</mo><msup><mrow><mo stretchy=\\\"false\\\">(</mo><msup><mrow><mi>K</mi></mrow><mrow><mo stretchy=\\\"false\\\">×</mo></mrow></msup><mo stretchy=\\\"false\\\">)</mo></mrow><mrow><mi>k</mi></mrow></msup></math></span><span></span>, considering whether <span><math altimg=\\\"eq-00021.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>β</mi></math></span><span></span> is rational or irrational. Here, <span><math altimg=\\\"eq-00022.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>K</mi></math></span><span></span> represents a number field, and <span><math altimg=\\\"eq-00023.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>𝜃</mi><mo>∈</mo><mo stretchy=\\\"false\\\">(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>. The notation <span><math altimg=\\\"eq-00024.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo>|</mo><mo>|</mo><mi>x</mi><mo>|</mo><mo>|</mo></math></span><span></span> denotes the distance between <span><math altimg=\\\"eq-00025.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>x</mi></math></span><span></span> and its nearest integer in <span><math altimg=\\\"eq-00026.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>ℤ</mi></math></span><span></span>.</p>\",\"PeriodicalId\":14293,\"journal\":{\"name\":\"International Journal of Number Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793042124500672\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1793042124500672","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设 P(x):=adxd+⋯+a0∈ℚ[x],ad>0,为阶数 d≥2 的多项式。设 (xn) 为一整数序列,满足 xn+1=P(xn)for all n=0,1,2,...,且 xn→∞as n→∞.设 α:=limn→∞xnd-n。那么,在 ad1/(d-1)∈ℚ的假设下,在最近的一个结果 [A. Dubickas, Transcendency of n.Dubickas, Transcendency of some constants related to integer sequences of polynomial iterations, Ramanujan J.57 (2022) 569-581] 的最新结果中,要么 α 是超越的,要么 α 可以是一个整数或二次皮索单元,α-1 是它在ℚ 上的共轭。在本文中,我们在不假设 ad1/(d-1) 在 ℚ 中的情况下研究了这种 α 的性质,并证明了要么 α 是超越数,要么 αh 是 Pisot 数,而 h 是数域 ℚα,ad-1d-1 的伽罗瓦闭的扭转子群的阶。本文提出的其他结果研究了在 (n,q1,...,qk)∈ℕ×(K×)k 中不等式 ||q1α1n+⋯+qkαkn+β||<𝜃n 的解,考虑了 β 是有理数还是无理数。这里,K 代表一个数域,𝜃∈(0,1)。符号 ||x|| 表示 x 与其在 ℤ 中最接近的整数之间的距离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The transcendence of growth constants associated with polynomial recursions

Let P(x):=adxd++a0[x], ad>0, be a polynomial of degree d2. Let (xn) be a sequence of integers satisfying xn+1=P(xn)for all n=0,1,2,andxnas n.

Set α:=limnxndn. Then, under the assumption ad1/(d1), in a recent result by [A. Dubickas, Transcendency of some constants related to integer sequences of polynomial iterations, Ramanujan J.57 (2022) 569–581], either α is transcendental or α can be an integer or a quadratic Pisot unit with α1 being its conjugate over . In this paper, we study the nature of such α without the assumption that ad1/(d1) is in , and we prove that either the number α is transcendental, or αh is a Pisot number with h being the order of the torsion subgroup of the Galois closure of the number field α,ad1d1.

Other results presented in this paper investigate the solutions of the inequality ||q1α1n++qkαkn+β||<𝜃n in (n,q1,,qk)×(K×)k, considering whether β is rational or irrational. Here, K represents a number field, and 𝜃(0,1). The notation ||x|| denotes the distance between x and its nearest integer in .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
14.30%
发文量
97
审稿时长
4-8 weeks
期刊介绍: This journal publishes original research papers and review articles on all areas of Number Theory, including elementary number theory, analytic number theory, algebraic number theory, arithmetic algebraic geometry, geometry of numbers, diophantine equations, diophantine approximation, transcendental number theory, probabilistic number theory, modular forms, multiplicative number theory, additive number theory, partitions, and computational number theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信