{"title":"有限域子群元素间的双重和三重特征和与间隙","authors":"Jiankang Wang, Zhefeng Xu","doi":"10.1142/s1793042124500842","DOIUrl":null,"url":null,"abstract":"<p>For an odd prime <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>p</mi></math></span><span></span>, let <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>𝔽</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span><span></span> be the finite field of <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>p</mi></math></span><span></span> elements. The main purpose of this paper is to establish new results on gaps between the elements of multiplicative subgroups of finite fields. For any <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>c</mi><mo>∈</mo><msubsup><mrow><mi>𝔽</mi></mrow><mrow><mi>p</mi></mrow><mrow><mo stretchy=\"false\">∗</mo></mrow></msubsup></math></span><span></span>, we also obtain new upper bounds of the following double character sum <disp-formula-group><span><math altimg=\"eq-00005.gif\" display=\"block\" overflow=\"scroll\"><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>c</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>χ</mi><mo>,</mo><msub><mrow><mi mathvariant=\"cal\">ℋ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi mathvariant=\"cal\">ℋ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo stretchy=\"false\">)</mo><mo>=</mo><munder><mrow><mo>∑</mo></mrow><mrow><msub><mrow><mi>h</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∈</mo><msub><mrow><mi mathvariant=\"cal\">ℋ</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></munder><munder><mrow><mo>∑</mo></mrow><mrow><msub><mrow><mi>h</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>∈</mo><msub><mrow><mi mathvariant=\"cal\">ℋ</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></munder><mi>χ</mi><mo stretchy=\"false\">(</mo><mi>a</mi><mo stretchy=\"false\">+</mo><mi>b</mi><msub><mrow><mi>h</mi></mrow><mrow><mn>1</mn></mrow></msub><mo stretchy=\"false\">+</mo><mi>c</mi><msub><mrow><mi>h</mi></mrow><mrow><mn>2</mn></mrow></msub><mo stretchy=\"false\">)</mo></mrow></math></span><span></span></disp-formula-group> and a triple character sum <disp-formula-group><span><math altimg=\"eq-00006.gif\" display=\"block\" overflow=\"scroll\"><mrow><msub><mrow><mi>S</mi></mrow><mrow><mi>χ</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><msub><mrow><mi mathvariant=\"cal\">ℋ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi mathvariant=\"cal\">ℋ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mi mathvariant=\"cal\">𝒩</mi><mo stretchy=\"false\">)</mo><mo>=</mo><munder><mrow><mo>∑</mo></mrow><mrow><mi>x</mi><mo>∈</mo><mi mathvariant=\"cal\">𝒩</mi></mrow></munder><munder><mrow><mo>∑</mo></mrow><mrow><msub><mrow><mi>h</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∈</mo><msub><mrow><mi mathvariant=\"cal\">ℋ</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></munder><munder><mrow><mo>∑</mo></mrow><mrow><msub><mrow><mi>h</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>∈</mo><msub><mrow><mi mathvariant=\"cal\">ℋ</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></munder><mi>χ</mi><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">+</mo><mi>a</mi><msub><mrow><mi>h</mi></mrow><mrow><mn>1</mn></mrow></msub><mo stretchy=\"false\">+</mo><mi>b</mi><msub><mrow><mi>h</mi></mrow><mrow><mn>2</mn></mrow></msub><mo stretchy=\"false\">)</mo></mrow></math></span><span></span></disp-formula-group> with <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi mathvariant=\"cal\">𝒩</mi><mo>=</mo><mo stretchy=\"false\">{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>N</mi><mo stretchy=\"false\">}</mo></math></span><span></span> and multiplicative subgroups <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi mathvariant=\"cal\">ℋ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi mathvariant=\"cal\">ℋ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⊆</mo><msubsup><mrow><mi>𝔽</mi></mrow><mrow><mi>p</mi></mrow><mrow><mo stretchy=\"false\">∗</mo></mrow></msubsup></math></span><span></span> of order <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span><span></span> and <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span><span></span>, respectively.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Double and triple character sums and gaps between the elements of subgroups of finite fields\",\"authors\":\"Jiankang Wang, Zhefeng Xu\",\"doi\":\"10.1142/s1793042124500842\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For an odd prime <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>p</mi></math></span><span></span>, let <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>𝔽</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span><span></span> be the finite field of <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>p</mi></math></span><span></span> elements. The main purpose of this paper is to establish new results on gaps between the elements of multiplicative subgroups of finite fields. For any <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>c</mi><mo>∈</mo><msubsup><mrow><mi>𝔽</mi></mrow><mrow><mi>p</mi></mrow><mrow><mo stretchy=\\\"false\\\">∗</mo></mrow></msubsup></math></span><span></span>, we also obtain new upper bounds of the following double character sum <disp-formula-group><span><math altimg=\\\"eq-00005.gif\\\" display=\\\"block\\\" overflow=\\\"scroll\\\"><mrow><msub><mrow><mi>T</mi></mrow><mrow><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><mi>c</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>χ</mi><mo>,</mo><msub><mrow><mi mathvariant=\\\"cal\\\">ℋ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi mathvariant=\\\"cal\\\">ℋ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo stretchy=\\\"false\\\">)</mo><mo>=</mo><munder><mrow><mo>∑</mo></mrow><mrow><msub><mrow><mi>h</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∈</mo><msub><mrow><mi mathvariant=\\\"cal\\\">ℋ</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></munder><munder><mrow><mo>∑</mo></mrow><mrow><msub><mrow><mi>h</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>∈</mo><msub><mrow><mi mathvariant=\\\"cal\\\">ℋ</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></munder><mi>χ</mi><mo stretchy=\\\"false\\\">(</mo><mi>a</mi><mo stretchy=\\\"false\\\">+</mo><mi>b</mi><msub><mrow><mi>h</mi></mrow><mrow><mn>1</mn></mrow></msub><mo stretchy=\\\"false\\\">+</mo><mi>c</mi><msub><mrow><mi>h</mi></mrow><mrow><mn>2</mn></mrow></msub><mo stretchy=\\\"false\\\">)</mo></mrow></math></span><span></span></disp-formula-group> and a triple character sum <disp-formula-group><span><math altimg=\\\"eq-00006.gif\\\" display=\\\"block\\\" overflow=\\\"scroll\\\"><mrow><msub><mrow><mi>S</mi></mrow><mrow><mi>χ</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>,</mo><msub><mrow><mi mathvariant=\\\"cal\\\">ℋ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi mathvariant=\\\"cal\\\">ℋ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mi mathvariant=\\\"cal\\\">𝒩</mi><mo stretchy=\\\"false\\\">)</mo><mo>=</mo><munder><mrow><mo>∑</mo></mrow><mrow><mi>x</mi><mo>∈</mo><mi mathvariant=\\\"cal\\\">𝒩</mi></mrow></munder><munder><mrow><mo>∑</mo></mrow><mrow><msub><mrow><mi>h</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∈</mo><msub><mrow><mi mathvariant=\\\"cal\\\">ℋ</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></munder><munder><mrow><mo>∑</mo></mrow><mrow><msub><mrow><mi>h</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>∈</mo><msub><mrow><mi mathvariant=\\\"cal\\\">ℋ</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></munder><mi>χ</mi><mo stretchy=\\\"false\\\">(</mo><mi>x</mi><mo stretchy=\\\"false\\\">+</mo><mi>a</mi><msub><mrow><mi>h</mi></mrow><mrow><mn>1</mn></mrow></msub><mo stretchy=\\\"false\\\">+</mo><mi>b</mi><msub><mrow><mi>h</mi></mrow><mrow><mn>2</mn></mrow></msub><mo stretchy=\\\"false\\\">)</mo></mrow></math></span><span></span></disp-formula-group> with <span><math altimg=\\\"eq-00007.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi mathvariant=\\\"cal\\\">𝒩</mi><mo>=</mo><mo stretchy=\\\"false\\\">{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>N</mi><mo stretchy=\\\"false\\\">}</mo></math></span><span></span> and multiplicative subgroups <span><math altimg=\\\"eq-00008.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi mathvariant=\\\"cal\\\">ℋ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi mathvariant=\\\"cal\\\">ℋ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>⊆</mo><msubsup><mrow><mi>𝔽</mi></mrow><mrow><mi>p</mi></mrow><mrow><mo stretchy=\\\"false\\\">∗</mo></mrow></msubsup></math></span><span></span> of order <span><math altimg=\\\"eq-00009.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span><span></span> and <span><math altimg=\\\"eq-00010.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span><span></span>, respectively.</p>\",\"PeriodicalId\":14293,\"journal\":{\"name\":\"International Journal of Number Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793042124500842\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1793042124500842","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Double and triple character sums and gaps between the elements of subgroups of finite fields
For an odd prime , let be the finite field of elements. The main purpose of this paper is to establish new results on gaps between the elements of multiplicative subgroups of finite fields. For any , we also obtain new upper bounds of the following double character sum and a triple character sum with and multiplicative subgroups of order and , respectively.
期刊介绍:
This journal publishes original research papers and review articles on all areas of Number Theory, including elementary number theory, analytic number theory, algebraic number theory, arithmetic algebraic geometry, geometry of numbers, diophantine equations, diophantine approximation, transcendental number theory, probabilistic number theory, modular forms, multiplicative number theory, additive number theory, partitions, and computational number theory.