{"title":"Riemann hypothesis for period polynomials for cusp forms on Γ0(N)","authors":"SoYoung Choi","doi":"10.1142/s1793042124500982","DOIUrl":null,"url":null,"abstract":"<p>We prove that for even integer <span><math altimg=\"eq-00003.gif\" display=\"inline\"><mi>k</mi></math></span><span></span>, almost all of zeros of the period polynomial associated to a cusp form of weight <span><math altimg=\"eq-00004.gif\" display=\"inline\"><mi>k</mi></math></span><span></span> on <span><math altimg=\"eq-00005.gif\" display=\"inline\"><msub><mrow><mi mathvariant=\"normal\">Γ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo stretchy=\"false\">(</mo><mi>N</mi><mo stretchy=\"false\">)</mo></math></span><span></span> are on the circle <span><math altimg=\"eq-00006.gif\" display=\"inline\"><mo>|</mo><mi>z</mi><mo>|</mo><mo>=</mo><mn>1</mn><mo stretchy=\"false\">/</mo><msqrt><mrow><mi>N</mi></mrow></msqrt></math></span><span></span> under some conditions.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1793042124500982","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We prove that for even integer , almost all of zeros of the period polynomial associated to a cusp form of weight on are on the circle under some conditions.
期刊介绍:
This journal publishes original research papers and review articles on all areas of Number Theory, including elementary number theory, analytic number theory, algebraic number theory, arithmetic algebraic geometry, geometry of numbers, diophantine equations, diophantine approximation, transcendental number theory, probabilistic number theory, modular forms, multiplicative number theory, additive number theory, partitions, and computational number theory.