{"title":"关于对数等差数列的说明","authors":"Gerold Schefer","doi":"10.1142/s1793042124500647","DOIUrl":null,"url":null,"abstract":"<p>For every algebraic number <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>κ</mi></math></span><span></span> on the unit circle which is not a root of unity we prove the existence of a strict sequence of algebraic numbers whose height tends to zero, such that the averages of the evaluation of <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>f</mi></mrow><mrow><mi>κ</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>z</mi><mo stretchy=\"false\">)</mo><mo>=</mo><mo>log</mo><mspace width=\"-.17em\"></mspace><mo>|</mo><mi>z</mi><mo stretchy=\"false\">−</mo><mi>κ</mi><mo>|</mo></math></span><span></span> at the conjugates are essentially bounded from above by <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">−</mo><mi>h</mi><mo stretchy=\"false\">(</mo><mi>κ</mi><mo stretchy=\"false\">)</mo></math></span><span></span>. This completes a characterization on functions <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>f</mi></mrow><mrow><mi>κ</mi></mrow></msub></math></span><span></span> initiated by Autissier and Baker–Masser, who cover the cases <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>κ</mi><mo>=</mo><mn>2</mn></math></span><span></span> and <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mo>|</mo><mi>κ</mi><mo>|</mo><mo>≠</mo><mn>1</mn></math></span><span></span>, respectively. Using the same ideas we also prove analogues in the <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>p</mi></math></span><span></span>-adic setting.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":"27 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A note on logarithmic equidistribution\",\"authors\":\"Gerold Schefer\",\"doi\":\"10.1142/s1793042124500647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For every algebraic number <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>κ</mi></math></span><span></span> on the unit circle which is not a root of unity we prove the existence of a strict sequence of algebraic numbers whose height tends to zero, such that the averages of the evaluation of <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>f</mi></mrow><mrow><mi>κ</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>z</mi><mo stretchy=\\\"false\\\">)</mo><mo>=</mo><mo>log</mo><mspace width=\\\"-.17em\\\"></mspace><mo>|</mo><mi>z</mi><mo stretchy=\\\"false\\\">−</mo><mi>κ</mi><mo>|</mo></math></span><span></span> at the conjugates are essentially bounded from above by <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo stretchy=\\\"false\\\">−</mo><mi>h</mi><mo stretchy=\\\"false\\\">(</mo><mi>κ</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>. This completes a characterization on functions <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>f</mi></mrow><mrow><mi>κ</mi></mrow></msub></math></span><span></span> initiated by Autissier and Baker–Masser, who cover the cases <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>κ</mi><mo>=</mo><mn>2</mn></math></span><span></span> and <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo>|</mo><mi>κ</mi><mo>|</mo><mo>≠</mo><mn>1</mn></math></span><span></span>, respectively. Using the same ideas we also prove analogues in the <span><math altimg=\\\"eq-00007.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>p</mi></math></span><span></span>-adic setting.</p>\",\"PeriodicalId\":14293,\"journal\":{\"name\":\"International Journal of Number Theory\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793042124500647\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1793042124500647","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
For every algebraic number on the unit circle which is not a root of unity we prove the existence of a strict sequence of algebraic numbers whose height tends to zero, such that the averages of the evaluation of at the conjugates are essentially bounded from above by . This completes a characterization on functions initiated by Autissier and Baker–Masser, who cover the cases and , respectively. Using the same ideas we also prove analogues in the -adic setting.
期刊介绍:
This journal publishes original research papers and review articles on all areas of Number Theory, including elementary number theory, analytic number theory, algebraic number theory, arithmetic algebraic geometry, geometry of numbers, diophantine equations, diophantine approximation, transcendental number theory, probabilistic number theory, modular forms, multiplicative number theory, additive number theory, partitions, and computational number theory.