多项式轨道中的算术级数

IF 0.5 3区 数学 Q3 MATHEMATICS
Mohammad Sadek, Mohamed Wafik, Tuğba Yesin
{"title":"多项式轨道中的算术级数","authors":"Mohammad Sadek, Mohamed Wafik, Tuğba Yesin","doi":"10.1142/s1793042124500970","DOIUrl":null,"url":null,"abstract":"<p>Let <span><math altimg=\"eq-00001.gif\" display=\"inline\"><mi>f</mi></math></span><span></span> be a polynomial with integer coefficients whose degree is at least 2. We consider the problem of covering the orbit <span><math altimg=\"eq-00002.gif\" display=\"inline\"><msub><mrow><mo>Orb</mo></mrow><mrow><mi>f</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>t</mi><mo stretchy=\"false\">)</mo><mo>=</mo><mo stretchy=\"false\">{</mo><mi>t</mi><mo>,</mo><mi>f</mi><mo stretchy=\"false\">(</mo><mi>t</mi><mo stretchy=\"false\">)</mo><mo>,</mo><mi>f</mi><mo stretchy=\"false\">(</mo><mi>f</mi><mo stretchy=\"false\">(</mo><mi>t</mi><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">)</mo><mo>,</mo><mo>…</mo><mo stretchy=\"false\">}</mo></math></span><span></span>, where <span><math altimg=\"eq-00003.gif\" display=\"inline\"><mi>t</mi></math></span><span></span> is an integer, using arithmetic progressions each of which contains <span><math altimg=\"eq-00004.gif\" display=\"inline\"><mi>t</mi></math></span><span></span>. Fixing an integer <span><math altimg=\"eq-00005.gif\" display=\"inline\"><mi>k</mi><mo>≥</mo><mn>2</mn></math></span><span></span>, we prove that it is impossible to cover <span><math altimg=\"eq-00006.gif\" display=\"inline\"><msub><mrow><mo>Orb</mo></mrow><mrow><mi>f</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>t</mi><mo stretchy=\"false\">)</mo></math></span><span></span> using <span><math altimg=\"eq-00007.gif\" display=\"inline\"><mi>k</mi></math></span><span></span> such arithmetic progressions unless <span><math altimg=\"eq-00008.gif\" display=\"inline\"><msub><mrow><mo>Orb</mo></mrow><mrow><mi>f</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>t</mi><mo stretchy=\"false\">)</mo></math></span><span></span> is contained in one of these progressions. In fact, we show that the relative density of terms covered by <span><math altimg=\"eq-00009.gif\" display=\"inline\"><mi>k</mi></math></span><span></span> such arithmetic progressions in <span><math altimg=\"eq-00010.gif\" display=\"inline\"><msub><mrow><mo>Orb</mo></mrow><mrow><mi>f</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>t</mi><mo stretchy=\"false\">)</mo></math></span><span></span> is uniformly bounded from above by a bound that depends solely on <span><math altimg=\"eq-00011.gif\" display=\"inline\"><mi>k</mi></math></span><span></span>. In addition, the latter relative density can be made as close as desired to <span><math altimg=\"eq-00012.gif\" display=\"inline\"><mn>1</mn></math></span><span></span> by an appropriate choice of <span><math altimg=\"eq-00013.gif\" display=\"inline\"><mi>k</mi></math></span><span></span> arithmetic progressions containing <span><math altimg=\"eq-00014.gif\" display=\"inline\"><mi>t</mi></math></span><span></span> if <span><math altimg=\"eq-00015.gif\" display=\"inline\"><mi>k</mi></math></span><span></span> is allowed to be large enough.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":"34 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Arithmetic progressions in polynomial orbits\",\"authors\":\"Mohammad Sadek, Mohamed Wafik, Tuğba Yesin\",\"doi\":\"10.1142/s1793042124500970\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\"><mi>f</mi></math></span><span></span> be a polynomial with integer coefficients whose degree is at least 2. We consider the problem of covering the orbit <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\"><msub><mrow><mo>Orb</mo></mrow><mrow><mi>f</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>t</mi><mo stretchy=\\\"false\\\">)</mo><mo>=</mo><mo stretchy=\\\"false\\\">{</mo><mi>t</mi><mo>,</mo><mi>f</mi><mo stretchy=\\\"false\\\">(</mo><mi>t</mi><mo stretchy=\\\"false\\\">)</mo><mo>,</mo><mi>f</mi><mo stretchy=\\\"false\\\">(</mo><mi>f</mi><mo stretchy=\\\"false\\\">(</mo><mi>t</mi><mo stretchy=\\\"false\\\">)</mo><mo stretchy=\\\"false\\\">)</mo><mo>,</mo><mo>…</mo><mo stretchy=\\\"false\\\">}</mo></math></span><span></span>, where <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\"><mi>t</mi></math></span><span></span> is an integer, using arithmetic progressions each of which contains <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\"><mi>t</mi></math></span><span></span>. Fixing an integer <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\"><mi>k</mi><mo>≥</mo><mn>2</mn></math></span><span></span>, we prove that it is impossible to cover <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\"><msub><mrow><mo>Orb</mo></mrow><mrow><mi>f</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>t</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> using <span><math altimg=\\\"eq-00007.gif\\\" display=\\\"inline\\\"><mi>k</mi></math></span><span></span> such arithmetic progressions unless <span><math altimg=\\\"eq-00008.gif\\\" display=\\\"inline\\\"><msub><mrow><mo>Orb</mo></mrow><mrow><mi>f</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>t</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> is contained in one of these progressions. In fact, we show that the relative density of terms covered by <span><math altimg=\\\"eq-00009.gif\\\" display=\\\"inline\\\"><mi>k</mi></math></span><span></span> such arithmetic progressions in <span><math altimg=\\\"eq-00010.gif\\\" display=\\\"inline\\\"><msub><mrow><mo>Orb</mo></mrow><mrow><mi>f</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>t</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> is uniformly bounded from above by a bound that depends solely on <span><math altimg=\\\"eq-00011.gif\\\" display=\\\"inline\\\"><mi>k</mi></math></span><span></span>. In addition, the latter relative density can be made as close as desired to <span><math altimg=\\\"eq-00012.gif\\\" display=\\\"inline\\\"><mn>1</mn></math></span><span></span> by an appropriate choice of <span><math altimg=\\\"eq-00013.gif\\\" display=\\\"inline\\\"><mi>k</mi></math></span><span></span> arithmetic progressions containing <span><math altimg=\\\"eq-00014.gif\\\" display=\\\"inline\\\"><mi>t</mi></math></span><span></span> if <span><math altimg=\\\"eq-00015.gif\\\" display=\\\"inline\\\"><mi>k</mi></math></span><span></span> is allowed to be large enough.</p>\",\"PeriodicalId\":14293,\"journal\":{\"name\":\"International Journal of Number Theory\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793042124500970\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1793042124500970","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑的问题是用算术级数覆盖轨道 Orbf(t)={t,f(t),f(f(t)),...},其中 t 是整数,而每个算术级数都包含 t。固定整数 k≥2,我们证明除非 Orbf(t) 包含在其中一个算术级数中,否则不可能用 k 个这样的算术级数覆盖 Orbf(t)。事实上,我们证明了在 Orbf(t) 中,由 k 个这样的算术级数所覆盖的项的相对密度是由一个完全取决于 k 的约束从上均匀限定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Arithmetic progressions in polynomial orbits

Let f be a polynomial with integer coefficients whose degree is at least 2. We consider the problem of covering the orbit Orbf(t)={t,f(t),f(f(t)),}, where t is an integer, using arithmetic progressions each of which contains t. Fixing an integer k2, we prove that it is impossible to cover Orbf(t) using k such arithmetic progressions unless Orbf(t) is contained in one of these progressions. In fact, we show that the relative density of terms covered by k such arithmetic progressions in Orbf(t) is uniformly bounded from above by a bound that depends solely on k. In addition, the latter relative density can be made as close as desired to 1 by an appropriate choice of k arithmetic progressions containing t if k is allowed to be large enough.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
14.30%
发文量
97
审稿时长
4-8 weeks
期刊介绍: This journal publishes original research papers and review articles on all areas of Number Theory, including elementary number theory, analytic number theory, algebraic number theory, arithmetic algebraic geometry, geometry of numbers, diophantine equations, diophantine approximation, transcendental number theory, probabilistic number theory, modular forms, multiplicative number theory, additive number theory, partitions, and computational number theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信