二次点的均匀性

IF 0.5 3区 数学 Q3 MATHEMATICS
Tangli Ge
{"title":"二次点的均匀性","authors":"Tangli Ge","doi":"10.1142/s1793042124500532","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we extend a uniformity result of Dimitrov <i>et al.</i> [Uniformity in Mordell-Lang for curves, <i>Ann. of Math.</i> (<i>2</i>) <b>194</b>(1) (2021) 237–298] to dimension two and use it to get a uniform bound on the cardinality of the set of all quadratic points for non-hyperelliptic non-bielliptic curves which only depend on the Mordell–Weil rank, the genus of the curve and the degree of the number field.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uniformity of quadratic points\",\"authors\":\"Tangli Ge\",\"doi\":\"10.1142/s1793042124500532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we extend a uniformity result of Dimitrov <i>et al.</i> [Uniformity in Mordell-Lang for curves, <i>Ann. of Math.</i> (<i>2</i>) <b>194</b>(1) (2021) 237–298] to dimension two and use it to get a uniform bound on the cardinality of the set of all quadratic points for non-hyperelliptic non-bielliptic curves which only depend on the Mordell–Weil rank, the genus of the curve and the degree of the number field.</p>\",\"PeriodicalId\":14293,\"journal\":{\"name\":\"International Journal of Number Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793042124500532\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1793042124500532","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们将 Dimitrov 等人[Uniformity in Mordell-Lang for curves, Ann. of Math. (2) 194(1) (2021) 237-298] 的统一性结果扩展到维数二,并利用它得到了非全椭圆非双曲曲线所有二次点集合的心数的统一约束,该约束只取决于莫德尔-韦尔等级、曲线的属和数域的度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uniformity of quadratic points

In this paper, we extend a uniformity result of Dimitrov et al. [Uniformity in Mordell-Lang for curves, Ann. of Math. (2) 194(1) (2021) 237–298] to dimension two and use it to get a uniform bound on the cardinality of the set of all quadratic points for non-hyperelliptic non-bielliptic curves which only depend on the Mordell–Weil rank, the genus of the curve and the degree of the number field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
14.30%
发文量
97
审稿时长
4-8 weeks
期刊介绍: This journal publishes original research papers and review articles on all areas of Number Theory, including elementary number theory, analytic number theory, algebraic number theory, arithmetic algebraic geometry, geometry of numbers, diophantine equations, diophantine approximation, transcendental number theory, probabilistic number theory, modular forms, multiplicative number theory, additive number theory, partitions, and computational number theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信