{"title":"截断二项式多项式的不可约性和伽洛瓦群","authors":"Shanta Laishram, Prabhakar Yadav","doi":"10.1142/s1793042124500817","DOIUrl":null,"url":null,"abstract":"<p>For positive integers <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi><mo>≥</mo><mi>m</mi></math></span><span></span>, let <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>m</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo><mo>:</mo><mo>=</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>j</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>m</mi></mrow></msubsup><mfenced close=\")\" open=\"(\" separators=\"\"><mfrac linethickness=\"0\"><mrow><mi>n</mi></mrow><mrow><mi>j</mi></mrow></mfrac></mfenced><msup><mrow><mi>x</mi></mrow><mrow><mi>j</mi></mrow></msup><mo>=</mo><mfenced close=\")\" open=\"(\" separators=\"\"><mfrac linethickness=\"0\"><mrow><mi>n</mi></mrow><mrow><mn>0</mn></mrow></mfrac></mfenced><mo stretchy=\"false\">+</mo><mfenced close=\")\" open=\"(\" separators=\"\"><mfrac linethickness=\"0\"><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></mfrac></mfenced><mi>x</mi><mo stretchy=\"false\">+</mo><mo>…</mo><mo stretchy=\"false\">+</mo><mfenced close=\")\" open=\"(\" separators=\"\"><mfrac linethickness=\"0\"><mrow><mi>n</mi></mrow><mrow><mi>m</mi></mrow></mfrac></mfenced><msup><mrow><mi>x</mi></mrow><mrow><mi>m</mi></mrow></msup></math></span><span></span> be the truncated binomial expansion of <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mo stretchy=\"false\">(</mo><mn>1</mn><mo stretchy=\"false\">+</mo><mi>x</mi><mo stretchy=\"false\">)</mo></mrow><mrow><mi>n</mi></mrow></msup></math></span><span></span> consisting of all terms of degree <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mo>≤</mo><mi>m</mi><mo>.</mo></math></span><span></span> It is conjectured that for <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi><mo>></mo><mi>m</mi><mo stretchy=\"false\">+</mo><mn>1</mn></math></span><span></span>, the polynomial <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>m</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo></math></span><span></span> is irreducible. We confirm this conjecture when <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mn>2</mn><mi>m</mi><mo>≤</mo><mi>n</mi><mo><</mo><msup><mrow><mo stretchy=\"false\">(</mo><mi>m</mi><mo stretchy=\"false\">+</mo><mn>1</mn><mo stretchy=\"false\">)</mo></mrow><mrow><mn>1</mn><mn>0</mn></mrow></msup><mo>.</mo></math></span><span></span> Also we show for any <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mi>r</mi><mo>≥</mo><mn>1</mn><mn>0</mn></math></span><span></span> and <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mn>2</mn><mi>m</mi><mo>≤</mo><mi>n</mi><mo><</mo><msup><mrow><mo stretchy=\"false\">(</mo><mi>m</mi><mo stretchy=\"false\">+</mo><mn>1</mn><mo stretchy=\"false\">)</mo></mrow><mrow><mi>r</mi><mo stretchy=\"false\">+</mo><mn>1</mn></mrow></msup></math></span><span></span>, the polynomial <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>m</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo></math></span><span></span> is irreducible when <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mi>m</mi><mo>≥</mo><mo>max</mo><mo stretchy=\"false\">{</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>6</mn></mrow></msup><mo>,</mo><mn>2</mn><msup><mrow><mi>r</mi></mrow><mrow><mn>3</mn></mrow></msup><mo stretchy=\"false\">}</mo><mo>.</mo></math></span><span></span> Under the explicit abc-conjecture, for a fixed <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><mi>m</mi></math></span><span></span>, we give an explicit <span><math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>n</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span><span></span> depending only on <span><math altimg=\"eq-00014.gif\" display=\"inline\" overflow=\"scroll\"><mi>m</mi></math></span><span></span> such that <span><math altimg=\"eq-00015.gif\" display=\"inline\" overflow=\"scroll\"><mo>∀</mo><mi>n</mi><mo>≥</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span><span></span>, the polynomial <span><math altimg=\"eq-00016.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>m</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo></math></span><span></span> is irreducible. Further <span><math altimg=\"eq-00017.gif\" display=\"inline\" overflow=\"scroll\"><mo>∀</mo><mi>n</mi><mo>≥</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span><span></span>, the Galois group associated to <span><math altimg=\"eq-00018.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>m</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo></math></span><span></span> is the symmetric group <span><math altimg=\"eq-00019.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>S</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>.</mo></math></span><span></span></p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Irreducibility and galois groups of truncated binomial polynomials\",\"authors\":\"Shanta Laishram, Prabhakar Yadav\",\"doi\":\"10.1142/s1793042124500817\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For positive integers <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>n</mi><mo>≥</mo><mi>m</mi></math></span><span></span>, let <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>m</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>x</mi><mo stretchy=\\\"false\\\">)</mo><mo>:</mo><mo>=</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>j</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>m</mi></mrow></msubsup><mfenced close=\\\")\\\" open=\\\"(\\\" separators=\\\"\\\"><mfrac linethickness=\\\"0\\\"><mrow><mi>n</mi></mrow><mrow><mi>j</mi></mrow></mfrac></mfenced><msup><mrow><mi>x</mi></mrow><mrow><mi>j</mi></mrow></msup><mo>=</mo><mfenced close=\\\")\\\" open=\\\"(\\\" separators=\\\"\\\"><mfrac linethickness=\\\"0\\\"><mrow><mi>n</mi></mrow><mrow><mn>0</mn></mrow></mfrac></mfenced><mo stretchy=\\\"false\\\">+</mo><mfenced close=\\\")\\\" open=\\\"(\\\" separators=\\\"\\\"><mfrac linethickness=\\\"0\\\"><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></mfrac></mfenced><mi>x</mi><mo stretchy=\\\"false\\\">+</mo><mo>…</mo><mo stretchy=\\\"false\\\">+</mo><mfenced close=\\\")\\\" open=\\\"(\\\" separators=\\\"\\\"><mfrac linethickness=\\\"0\\\"><mrow><mi>n</mi></mrow><mrow><mi>m</mi></mrow></mfrac></mfenced><msup><mrow><mi>x</mi></mrow><mrow><mi>m</mi></mrow></msup></math></span><span></span> be the truncated binomial expansion of <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mo stretchy=\\\"false\\\">(</mo><mn>1</mn><mo stretchy=\\\"false\\\">+</mo><mi>x</mi><mo stretchy=\\\"false\\\">)</mo></mrow><mrow><mi>n</mi></mrow></msup></math></span><span></span> consisting of all terms of degree <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo>≤</mo><mi>m</mi><mo>.</mo></math></span><span></span> It is conjectured that for <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>n</mi><mo>></mo><mi>m</mi><mo stretchy=\\\"false\\\">+</mo><mn>1</mn></math></span><span></span>, the polynomial <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>m</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>x</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> is irreducible. We confirm this conjecture when <span><math altimg=\\\"eq-00007.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mn>2</mn><mi>m</mi><mo>≤</mo><mi>n</mi><mo><</mo><msup><mrow><mo stretchy=\\\"false\\\">(</mo><mi>m</mi><mo stretchy=\\\"false\\\">+</mo><mn>1</mn><mo stretchy=\\\"false\\\">)</mo></mrow><mrow><mn>1</mn><mn>0</mn></mrow></msup><mo>.</mo></math></span><span></span> Also we show for any <span><math altimg=\\\"eq-00008.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>r</mi><mo>≥</mo><mn>1</mn><mn>0</mn></math></span><span></span> and <span><math altimg=\\\"eq-00009.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mn>2</mn><mi>m</mi><mo>≤</mo><mi>n</mi><mo><</mo><msup><mrow><mo stretchy=\\\"false\\\">(</mo><mi>m</mi><mo stretchy=\\\"false\\\">+</mo><mn>1</mn><mo stretchy=\\\"false\\\">)</mo></mrow><mrow><mi>r</mi><mo stretchy=\\\"false\\\">+</mo><mn>1</mn></mrow></msup></math></span><span></span>, the polynomial <span><math altimg=\\\"eq-00010.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>m</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>x</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> is irreducible when <span><math altimg=\\\"eq-00011.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>m</mi><mo>≥</mo><mo>max</mo><mo stretchy=\\\"false\\\">{</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>6</mn></mrow></msup><mo>,</mo><mn>2</mn><msup><mrow><mi>r</mi></mrow><mrow><mn>3</mn></mrow></msup><mo stretchy=\\\"false\\\">}</mo><mo>.</mo></math></span><span></span> Under the explicit abc-conjecture, for a fixed <span><math altimg=\\\"eq-00012.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>m</mi></math></span><span></span>, we give an explicit <span><math altimg=\\\"eq-00013.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>n</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>,</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span><span></span> depending only on <span><math altimg=\\\"eq-00014.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>m</mi></math></span><span></span> such that <span><math altimg=\\\"eq-00015.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo>∀</mo><mi>n</mi><mo>≥</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span><span></span>, the polynomial <span><math altimg=\\\"eq-00016.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>m</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>x</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> is irreducible. Further <span><math altimg=\\\"eq-00017.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo>∀</mo><mi>n</mi><mo>≥</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span><span></span>, the Galois group associated to <span><math altimg=\\\"eq-00018.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>m</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>x</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> is the symmetric group <span><math altimg=\\\"eq-00019.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>S</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>.</mo></math></span><span></span></p>\",\"PeriodicalId\":14293,\"journal\":{\"name\":\"International Journal of Number Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793042124500817\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1793042124500817","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Irreducibility and galois groups of truncated binomial polynomials
For positive integers , let be the truncated binomial expansion of consisting of all terms of degree It is conjectured that for , the polynomial is irreducible. We confirm this conjecture when Also we show for any and , the polynomial is irreducible when Under the explicit abc-conjecture, for a fixed , we give an explicit depending only on such that , the polynomial is irreducible. Further , the Galois group associated to is the symmetric group
期刊介绍:
This journal publishes original research papers and review articles on all areas of Number Theory, including elementary number theory, analytic number theory, algebraic number theory, arithmetic algebraic geometry, geometry of numbers, diophantine equations, diophantine approximation, transcendental number theory, probabilistic number theory, modular forms, multiplicative number theory, additive number theory, partitions, and computational number theory.