{"title":"GL3/ℚ 和立方域的尖顶同调","authors":"Avner Ash, Dan Yasaki","doi":"10.1142/s1793042124500829","DOIUrl":null,"url":null,"abstract":"<p>We investigate the subspace of the homology of a congruence subgroup <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi mathvariant=\"normal\">Γ</mi></math></span><span></span> of <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mstyle><mtext mathvariant=\"normal\">SL</mtext></mstyle></mrow><mrow><mn>3</mn></mrow></msub><mo stretchy=\"false\">(</mo><mi>ℤ</mi><mo stretchy=\"false\">)</mo></math></span><span></span> with coefficients in the Steinberg module <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mstyle><mtext mathvariant=\"normal\">St</mtext></mstyle><mo stretchy=\"false\">(</mo><msup><mrow><mi>ℚ</mi></mrow><mrow><mn>3</mn></mrow></msup><mo stretchy=\"false\">)</mo></math></span><span></span> which is spanned by certain modular symbols formed using the units of a totally real cubic field <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>E</mi></math></span><span></span>. By Borel–Serre duality, <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub><mo stretchy=\"false\">(</mo><mi mathvariant=\"normal\">Γ</mi><mo>,</mo><mstyle><mtext mathvariant=\"normal\">St</mtext></mstyle><mo stretchy=\"false\">(</mo><msup><mrow><mi>ℚ</mi></mrow><mrow><mn>3</mn></mrow></msup><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">)</mo></math></span><span></span> is isomorphic to <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>H</mi></mrow><mrow><mn>3</mn></mrow></msup><mo stretchy=\"false\">(</mo><mi mathvariant=\"normal\">Γ</mi><mo>,</mo><mi>ℚ</mi><mo stretchy=\"false\">)</mo></math></span><span></span>. The Borel–Serre duals of the modular symbols in question necessarily lie in the cuspidal cohomology <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><msubsup><mrow><mi>H</mi></mrow><mrow><mstyle><mtext mathvariant=\"normal\">cusp</mtext></mstyle></mrow><mrow><mn>3</mn></mrow></msubsup><mo stretchy=\"false\">(</mo><mi mathvariant=\"normal\">Γ</mi><mo>,</mo><mi>ℚ</mi><mo stretchy=\"false\">)</mo></math></span><span></span>. Their span is a naturally defined subspace <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mi>C</mi><mo stretchy=\"false\">(</mo><mi mathvariant=\"normal\">Γ</mi><mo>,</mo><mi>E</mi><mo stretchy=\"false\">)</mo></math></span><span></span> of <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><msubsup><mrow><mi>H</mi></mrow><mrow><mstyle><mtext mathvariant=\"normal\">cusp</mtext></mstyle></mrow><mrow><mn>3</mn></mrow></msubsup><mo stretchy=\"false\">(</mo><mi mathvariant=\"normal\">Γ</mi><mo>,</mo><mi>ℚ</mi><mo stretchy=\"false\">)</mo></math></span><span></span>. Using a computer, we study where <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mi>C</mi><mo stretchy=\"false\">(</mo><mi mathvariant=\"normal\">Γ</mi><mo>,</mo><mi>E</mi><mo stretchy=\"false\">)</mo></math></span><span></span> sits between <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><mn>0</mn></math></span><span></span> and <span><math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"><msubsup><mrow><mi>H</mi></mrow><mrow><mstyle><mtext mathvariant=\"normal\">cusp</mtext></mstyle></mrow><mrow><mn>3</mn></mrow></msubsup><mo stretchy=\"false\">(</mo><mi mathvariant=\"normal\">Γ</mi><mo>,</mo><mi>ℚ</mi><mo stretchy=\"false\">)</mo></math></span><span></span>. On the basis of our computations, we conjecture that <span><math altimg=\"eq-00014.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mo>∑</mo></mrow><mrow><mi>E</mi></mrow></msub><mi>C</mi><mo stretchy=\"false\">(</mo><mi mathvariant=\"normal\">Γ</mi><mo>,</mo><mi>E</mi><mo stretchy=\"false\">)</mo><mo>=</mo><msubsup><mrow><mi>H</mi></mrow><mrow><mstyle><mtext mathvariant=\"normal\">cusp</mtext></mstyle></mrow><mrow><mn>3</mn></mrow></msubsup><mo stretchy=\"false\">(</mo><mi mathvariant=\"normal\">Γ</mi><mo>,</mo><mi>ℚ</mi><mo stretchy=\"false\">)</mo></math></span><span></span>, and we raise the question as to whether for each <span><math altimg=\"eq-00015.gif\" display=\"inline\" overflow=\"scroll\"><mi>E</mi></math></span><span></span> individually it might always be true that <span><math altimg=\"eq-00016.gif\" display=\"inline\" overflow=\"scroll\"><mi>C</mi><mo stretchy=\"false\">(</mo><mi mathvariant=\"normal\">Γ</mi><mo>,</mo><mi>E</mi><mo stretchy=\"false\">)</mo><mo>=</mo><msubsup><mrow><mi>H</mi></mrow><mrow><mstyle><mtext mathvariant=\"normal\">cusp</mtext></mstyle></mrow><mrow><mn>3</mn></mrow></msubsup><mo stretchy=\"false\">(</mo><mi mathvariant=\"normal\">Γ</mi><mo>,</mo><mi>ℚ</mi><mo stretchy=\"false\">)</mo></math></span><span></span>.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The cuspidal cohomology of GL3/ℚ and cubic fields\",\"authors\":\"Avner Ash, Dan Yasaki\",\"doi\":\"10.1142/s1793042124500829\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We investigate the subspace of the homology of a congruence subgroup <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi mathvariant=\\\"normal\\\">Γ</mi></math></span><span></span> of <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mstyle><mtext mathvariant=\\\"normal\\\">SL</mtext></mstyle></mrow><mrow><mn>3</mn></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>ℤ</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> with coefficients in the Steinberg module <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mstyle><mtext mathvariant=\\\"normal\\\">St</mtext></mstyle><mo stretchy=\\\"false\\\">(</mo><msup><mrow><mi>ℚ</mi></mrow><mrow><mn>3</mn></mrow></msup><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> which is spanned by certain modular symbols formed using the units of a totally real cubic field <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>E</mi></math></span><span></span>. By Borel–Serre duality, <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>H</mi></mrow><mrow><mn>0</mn></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi mathvariant=\\\"normal\\\">Γ</mi><mo>,</mo><mstyle><mtext mathvariant=\\\"normal\\\">St</mtext></mstyle><mo stretchy=\\\"false\\\">(</mo><msup><mrow><mi>ℚ</mi></mrow><mrow><mn>3</mn></mrow></msup><mo stretchy=\\\"false\\\">)</mo><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> is isomorphic to <span><math altimg=\\\"eq-00007.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>H</mi></mrow><mrow><mn>3</mn></mrow></msup><mo stretchy=\\\"false\\\">(</mo><mi mathvariant=\\\"normal\\\">Γ</mi><mo>,</mo><mi>ℚ</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>. The Borel–Serre duals of the modular symbols in question necessarily lie in the cuspidal cohomology <span><math altimg=\\\"eq-00008.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msubsup><mrow><mi>H</mi></mrow><mrow><mstyle><mtext mathvariant=\\\"normal\\\">cusp</mtext></mstyle></mrow><mrow><mn>3</mn></mrow></msubsup><mo stretchy=\\\"false\\\">(</mo><mi mathvariant=\\\"normal\\\">Γ</mi><mo>,</mo><mi>ℚ</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>. Their span is a naturally defined subspace <span><math altimg=\\\"eq-00009.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>C</mi><mo stretchy=\\\"false\\\">(</mo><mi mathvariant=\\\"normal\\\">Γ</mi><mo>,</mo><mi>E</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> of <span><math altimg=\\\"eq-00010.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msubsup><mrow><mi>H</mi></mrow><mrow><mstyle><mtext mathvariant=\\\"normal\\\">cusp</mtext></mstyle></mrow><mrow><mn>3</mn></mrow></msubsup><mo stretchy=\\\"false\\\">(</mo><mi mathvariant=\\\"normal\\\">Γ</mi><mo>,</mo><mi>ℚ</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>. Using a computer, we study where <span><math altimg=\\\"eq-00011.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>C</mi><mo stretchy=\\\"false\\\">(</mo><mi mathvariant=\\\"normal\\\">Γ</mi><mo>,</mo><mi>E</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> sits between <span><math altimg=\\\"eq-00012.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mn>0</mn></math></span><span></span> and <span><math altimg=\\\"eq-00013.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msubsup><mrow><mi>H</mi></mrow><mrow><mstyle><mtext mathvariant=\\\"normal\\\">cusp</mtext></mstyle></mrow><mrow><mn>3</mn></mrow></msubsup><mo stretchy=\\\"false\\\">(</mo><mi mathvariant=\\\"normal\\\">Γ</mi><mo>,</mo><mi>ℚ</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>. On the basis of our computations, we conjecture that <span><math altimg=\\\"eq-00014.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mo>∑</mo></mrow><mrow><mi>E</mi></mrow></msub><mi>C</mi><mo stretchy=\\\"false\\\">(</mo><mi mathvariant=\\\"normal\\\">Γ</mi><mo>,</mo><mi>E</mi><mo stretchy=\\\"false\\\">)</mo><mo>=</mo><msubsup><mrow><mi>H</mi></mrow><mrow><mstyle><mtext mathvariant=\\\"normal\\\">cusp</mtext></mstyle></mrow><mrow><mn>3</mn></mrow></msubsup><mo stretchy=\\\"false\\\">(</mo><mi mathvariant=\\\"normal\\\">Γ</mi><mo>,</mo><mi>ℚ</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>, and we raise the question as to whether for each <span><math altimg=\\\"eq-00015.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>E</mi></math></span><span></span> individually it might always be true that <span><math altimg=\\\"eq-00016.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>C</mi><mo stretchy=\\\"false\\\">(</mo><mi mathvariant=\\\"normal\\\">Γ</mi><mo>,</mo><mi>E</mi><mo stretchy=\\\"false\\\">)</mo><mo>=</mo><msubsup><mrow><mi>H</mi></mrow><mrow><mstyle><mtext mathvariant=\\\"normal\\\">cusp</mtext></mstyle></mrow><mrow><mn>3</mn></mrow></msubsup><mo stretchy=\\\"false\\\">(</mo><mi mathvariant=\\\"normal\\\">Γ</mi><mo>,</mo><mi>ℚ</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>.</p>\",\"PeriodicalId\":14293,\"journal\":{\"name\":\"International Journal of Number Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793042124500829\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1793042124500829","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
We investigate the subspace of the homology of a congruence subgroup of with coefficients in the Steinberg module which is spanned by certain modular symbols formed using the units of a totally real cubic field . By Borel–Serre duality, is isomorphic to . The Borel–Serre duals of the modular symbols in question necessarily lie in the cuspidal cohomology . Their span is a naturally defined subspace of . Using a computer, we study where sits between and . On the basis of our computations, we conjecture that , and we raise the question as to whether for each individually it might always be true that .
期刊介绍:
This journal publishes original research papers and review articles on all areas of Number Theory, including elementary number theory, analytic number theory, algebraic number theory, arithmetic algebraic geometry, geometry of numbers, diophantine equations, diophantine approximation, transcendental number theory, probabilistic number theory, modular forms, multiplicative number theory, additive number theory, partitions, and computational number theory.