International Journal of Number Theory最新文献

筛选
英文 中文
Variance of primes in short residue classes for function fields 函数域短残差类中的素数方差
IF 0.7 3区 数学
International Journal of Number Theory Pub Date : 2024-03-26 DOI: 10.1142/s1793042124500763
Stephan Baier, Arkaprava Bhandari
{"title":"Variance of primes in short residue classes for function fields","authors":"Stephan Baier, Arkaprava Bhandari","doi":"10.1142/s1793042124500763","DOIUrl":"https://doi.org/10.1142/s1793042124500763","url":null,"abstract":"<p>Keating and Rudnick [The variance of the number of prime polynomials in short intervals and in residue classes, <i>Int. Math. Res. Not.</i><b>2014</b>(1) (2014) 259–288] derived asymptotic formulas for the variances of primes in arithmetic progressions and short intervals in the function field setting. Here we consider the hybrid problem of calculating the variance of primes in intersections of arithmetic progressions and short intervals. Keating and Rudnick used an involution to translate short intervals into arithmetic progressions. We follow their approach but apply this involution, in addition, to the arithmetic progressions. This creates dual arithmetic progressions in the case when the modulus <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>Q</mi></math></span><span></span> is a polynomial in <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>𝔽</mi></mrow><mrow><mi>q</mi></mrow></msub><mo stretchy=\"false\">[</mo><mi>T</mi><mo stretchy=\"false\">]</mo></math></span><span></span> such that <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>Q</mi><mo stretchy=\"false\">(</mo><mn>0</mn><mo stretchy=\"false\">)</mo><mo>≠</mo><mn>0</mn></math></span><span></span>. The latter is a restriction which we keep throughout our paper. At the end, we discuss what is needed to relax this condition.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":"53 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140325446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiplier systems for Siegel modular groups 西格尔模块群的乘法系统
IF 0.7 3区 数学
International Journal of Number Theory Pub Date : 2024-03-26 DOI: 10.1142/s1793042124500684
Eberhard Freitag, Adrian Hauffe-Waschbüsch
{"title":"Multiplier systems for Siegel modular groups","authors":"Eberhard Freitag, Adrian Hauffe-Waschbüsch","doi":"10.1142/s1793042124500684","DOIUrl":"https://doi.org/10.1142/s1793042124500684","url":null,"abstract":"<p>Deligne proved in [Extensions centrales non résiduellement finies de groupes arithmetiques, <i>C. R. Acad. Sci. Paris</i><b>287</b> (1978) 203–208] (see also 7.1 in [R. Hill, Fractional weights and non-congruence subgroups, in <i>Automorphic Forms and Representations of Algebraic Groups Over Local Fields</i>, eds. H. Saito and T. Takahashi, Surikenkoukyuroku Series, Vol. 1338 (2003), pp. 71–80]) that the weights of Siegel modular forms on any congruence subgroup of the Siegel modular group of genus <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>g</mi><mo>&gt;</mo><mn>1</mn></math></span><span></span> must be integral or half integral. Actually he proved that for a system <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>v</mi><mo stretchy=\"false\">(</mo><mi>M</mi><mo stretchy=\"false\">)</mo></math></span><span></span> of complex numbers of absolute value 1</p><p><span><math altimg=\"eq-00003.gif\" display=\"block\" overflow=\"scroll\"><mtable columnalign=\"left\"><mtr><mtd columnalign=\"right\"><mspace width=\"8.5pc\"></mspace><mi>v</mi><mo stretchy=\"false\">(</mo><mi>M</mi><mo stretchy=\"false\">)</mo><mo>det</mo><msup><mrow><mo stretchy=\"false\">(</mo><mi>C</mi><mi>Z</mi><mo stretchy=\"false\">+</mo><mi>D</mi><mo stretchy=\"false\">)</mo></mrow><mrow><mi>r</mi></mrow></msup><mo stretchy=\"false\">(</mo><mi>r</mi><mo>∈</mo><mi>ℝ</mi><mo stretchy=\"false\">)</mo><mspace width=\"8.5pc\"></mspace><mo stretchy=\"false\">(</mo><mn>0</mn><mo>.</mo><mn>1</mn><mo stretchy=\"false\">)</mo></mtd><mtd></mtd></mtr></mtable></math></span><span></span></p><p>can be an automorphy factor only if <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mn>2</mn><mi>r</mi></math></span><span></span> is integral. We give a different proof for this. It uses Mennicke’s result [Zur Theorie der Siegelschen Modulgruppe, <i>Math. Ann.</i><b>159</b> (1965) 115–129] that subgroups of finite index of the Siegel modular group are congruence subgroups and some techniques from [Solution of the congruence subgroup problem for <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>S</mi><msub><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msub><mspace width=\".275em\"></mspace><mo stretchy=\"false\">(</mo><mi>n</mi><mo>≥</mo><mn>3</mn><mo stretchy=\"false\">)</mo></math></span><span></span> and <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>S</mi><msub><mrow><mi>p</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msub><mspace width=\".275em\"></mspace><mo stretchy=\"false\">(</mo><mi>n</mi><mo>≥</mo><mn>2</mn><mo stretchy=\"false\">)</mo></math></span><span></span>, <i>Publ. Math. Inst. Hautes Études Sci.</i><b>33</b> (1967) 59–137] of Bass–Milnor–Serre.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":"252 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140325840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The minimal odd excludant and Euler’s partition theorem 最小奇数不等式和欧拉分割定理
IF 0.7 3区 数学
International Journal of Number Theory Pub Date : 2024-03-26 DOI: 10.1142/s1793042124500714
Andrew Y. Z. Wang, Zheng Xu
{"title":"The minimal odd excludant and Euler’s partition theorem","authors":"Andrew Y. Z. Wang, Zheng Xu","doi":"10.1142/s1793042124500714","DOIUrl":"https://doi.org/10.1142/s1793042124500714","url":null,"abstract":"<p>In this work, we establish two interesting partition identities involving the minimal odd excludant, which has attracted great attention in recent years. In particular, we find a strong refinement of Euler’s celebrated theorem that the number of partitions of an integer into odd parts equals the number of partitions of that integer into distinct parts.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":"32 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140325447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reciprocity formulae for generalized Dedekind–Rademacher sums attached to three Dirichlet characters and related polynomial reciprocity formulae 附加于三个 Dirichlet 字符的广义 Dedekind-Rademacher 和的互易公式及相关多项式互易公式
IF 0.7 3区 数学
International Journal of Number Theory Pub Date : 2024-03-26 DOI: 10.1142/s1793042124500726
Brad Isaacson
{"title":"Reciprocity formulae for generalized Dedekind–Rademacher sums attached to three Dirichlet characters and related polynomial reciprocity formulae","authors":"Brad Isaacson","doi":"10.1142/s1793042124500726","DOIUrl":"https://doi.org/10.1142/s1793042124500726","url":null,"abstract":"<p>We define a three-character analogue of the generalized Dedekind–Rademacher sum introduced by Hall, Wilson, and Zagier and prove its reciprocity formula which contains all of the reciprocity formulas in the literature for generalized Dedekind–Rademacher sums attached (and not attached) to Dirichlet characters as special cases. Additionally, we prove related polynomial reciprocity formulas which contain all of the polynomial reciprocity formulas in the literature as special cases, such as those given by Carlitz, Beck &amp; Kohl, and the present author.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":"28 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140325449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On almost-prime k-tuples 关于几乎是素数的 k 元组
IF 0.7 3区 数学
International Journal of Number Theory Pub Date : 2024-03-26 DOI: 10.1142/s1793042124500751
Bin Chen
{"title":"On almost-prime k-tuples","authors":"Bin Chen","doi":"10.1142/s1793042124500751","DOIUrl":"https://doi.org/10.1142/s1793042124500751","url":null,"abstract":"<p>Let <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>τ</mi></math></span><span></span> denote the divisor function and <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi mathvariant=\"cal\">ℋ</mi><mo>=</mo><mo stretchy=\"false\">{</mo><msub><mrow><mi>h</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>h</mi></mrow><mrow><mi>k</mi></mrow></msub><mo stretchy=\"false\">}</mo></math></span><span></span> be an admissible set. We prove that there are infinitely many <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi></math></span><span></span> for which the product <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><msubsup><mrow><mo>∏</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>k</mi></mrow></msubsup><mo stretchy=\"false\">(</mo><mi>n</mi><mo stretchy=\"false\">+</mo><msub><mrow><mi>h</mi></mrow><mrow><mi>i</mi></mrow></msub><mo stretchy=\"false\">)</mo></math></span><span></span> is square-free and <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>k</mi></mrow></msubsup><mi>τ</mi><mo stretchy=\"false\">(</mo><mi>n</mi><mo stretchy=\"false\">+</mo><msub><mrow><mi>h</mi></mrow><mrow><mi>i</mi></mrow></msub><mo stretchy=\"false\">)</mo><mo>≤</mo><mo stretchy=\"false\">⌊</mo><msub><mrow><mi>ρ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo stretchy=\"false\">⌋</mo></math></span><span></span>, where <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>ρ</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span><span></span> is asymptotic to <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mfrac><mrow><mn>2</mn><mn>1</mn><mn>2</mn><mn>6</mn></mrow><mrow><mn>2</mn><mn>8</mn><mn>5</mn><mn>3</mn></mrow></mfrac><msup><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span><span></span>. It improves a previous result of Ram Murty and Vatwani, replacing <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mn>3</mn><mo stretchy=\"false\">/</mo><mn>4</mn></math></span><span></span> by <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mn>2</mn><mn>1</mn><mn>2</mn><mn>6</mn><mo stretchy=\"false\">/</mo><mn>2</mn><mn>8</mn><mn>5</mn><mn>3</mn></math></span><span></span>. The main ingredients in our proof are the higher rank Selberg sieve and Irving–Wu–Xi estimate for the divisor function in arithmetic progressions to smooth moduli.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":"42 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140325724","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the Diophantine equation σ2(X¯n) = σn(X¯n) 关于 Diophantine 方程 σ2(X¯n) = σn(X¯n)
IF 0.7 3区 数学
International Journal of Number Theory Pub Date : 2024-03-26 DOI: 10.1142/s1793042124500635
Piotr Miska, Maciej Ulas
{"title":"On the Diophantine equation σ2(X¯n) = σn(X¯n)","authors":"Piotr Miska, Maciej Ulas","doi":"10.1142/s1793042124500635","DOIUrl":"https://doi.org/10.1142/s1793042124500635","url":null,"abstract":"<p>In this paper, we investigate the set <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>S</mi><mo stretchy=\"false\">(</mo><mi>n</mi><mo stretchy=\"false\">)</mo></math></span><span></span> of positive integer solutions of the title Diophantine equation. In particular, for a given <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi></math></span><span></span> we prove boundedness of the number of solutions, give precise upper bound on the common value of <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>σ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo stretchy=\"false\">(</mo><msub><mrow><mover accent=\"false\"><mrow><mi>X</mi></mrow><mo accent=\"true\">¯</mo></mover></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">)</mo></math></span><span></span> and <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>σ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><msub><mrow><mover accent=\"false\"><mrow><mi>X</mi></mrow><mo accent=\"true\">¯</mo></mover></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">)</mo></math></span><span></span> together with the biggest value of the variable <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span><span></span> appearing in the solution. Moreover, we enumerate all solutions for <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi><mo>≤</mo><mn>1</mn><mn>6</mn></math></span><span></span> and discuss the set of values of <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">/</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi><mo stretchy=\"false\">−</mo><mn>1</mn></mrow></msub></math></span><span></span> over elements of <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mi>S</mi><mo stretchy=\"false\">(</mo><mi>n</mi><mo stretchy=\"false\">)</mo></math></span><span></span>.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":"101 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140325497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fourier coefficients of cusp forms on special sequences 特殊序列上尖顶形式的傅里叶系数
IF 0.7 3区 数学
International Journal of Number Theory Pub Date : 2024-03-21 DOI: 10.1142/s1793042124500568
Weili Yao
{"title":"Fourier coefficients of cusp forms on special sequences","authors":"Weili Yao","doi":"10.1142/s1793042124500568","DOIUrl":"https://doi.org/10.1142/s1793042124500568","url":null,"abstract":"<p>In this paper, we investigate the square of the normalized Fourier coefficients of the primitive cusp forms <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>f</mi></math></span><span></span> and its symmetric-lift at integers with a fixed number of distinct prime divisors, and present asymptotic formulas for them in short intervals.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":"158 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140204341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Density questions in rings of the form 𝒪K[γ] ∩ K 形式为 𝒪K[γ] ∩K 的环中的密度问题
IF 0.7 3区 数学
International Journal of Number Theory Pub Date : 2024-03-21 DOI: 10.1142/s1793042124500581
Deepesh Singhal, Yuxin Lin
{"title":"Density questions in rings of the form 𝒪K[γ] ∩ K","authors":"Deepesh Singhal, Yuxin Lin","doi":"10.1142/s1793042124500581","DOIUrl":"https://doi.org/10.1142/s1793042124500581","url":null,"abstract":"&lt;p&gt;We fix a number field &lt;span&gt;&lt;math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; and study statistical properties of the ring &lt;span&gt;&lt;math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi mathvariant=\"cal\"&gt;𝒪&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo stretchy=\"false\"&gt;[&lt;/mo&gt;&lt;mi&gt;γ&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;]&lt;/mo&gt;&lt;mo stretchy=\"false\"&gt;∩&lt;/mo&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; as &lt;span&gt;&lt;math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mi&gt;γ&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; varies over algebraic numbers of a fixed degree &lt;span&gt;&lt;math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;. Given &lt;span&gt;&lt;math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;≥&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;, we explicitly compute the density of &lt;span&gt;&lt;math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mi&gt;γ&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; for which &lt;span&gt;&lt;math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi mathvariant=\"cal\"&gt;𝒪&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo stretchy=\"false\"&gt;[&lt;/mo&gt;&lt;mi&gt;γ&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;]&lt;/mo&gt;&lt;mo stretchy=\"false\"&gt;∩&lt;/mo&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi mathvariant=\"cal\"&gt;𝒪&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo stretchy=\"false\"&gt;[&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo stretchy=\"false\"&gt;/&lt;/mo&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;]&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; and show that this does not depend on the number field &lt;span&gt;&lt;math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;. In particular, we show that the density of &lt;span&gt;&lt;math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mi&gt;γ&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; for which &lt;span&gt;&lt;math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi mathvariant=\"cal\"&gt;𝒪&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo stretchy=\"false\"&gt;[&lt;/mo&gt;&lt;mi&gt;γ&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;]&lt;/mo&gt;&lt;mo stretchy=\"false\"&gt;∩&lt;/mo&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi mathvariant=\"cal\"&gt;𝒪&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; is &lt;span&gt;&lt;math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mfrac&gt;&lt;mrow&gt;&lt;mi&gt;ζ&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;+&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;ζ&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mfrac&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;. In a recent paper [Singhal and Lin, Primes in denominators of algebraic numbers, &lt;i&gt;Int. J. Number Theory&lt;/i&gt; (2023), doi:10.1142/S1793042124500167], the authors define &lt;span&gt;&lt;math altimg=\"eq-00014.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mi&gt;X&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;γ&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; to be a certain finite subset of &lt;span&gt;&lt;math altimg=\"eq-00015.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mstyle&gt;&lt;mtext&gt;Spec&lt;/mtext&gt;&lt;/mst","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":"15 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140204336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-partition analogue of q-binomial coefficients q 次二项式系数的多分区类似物
IF 0.7 3区 数学
International Journal of Number Theory Pub Date : 2024-03-20 DOI: 10.1142/s1793042124500659
Byungchan Kim, Hayan Nam, Myungjun Yu
{"title":"Multi-partition analogue of q-binomial coefficients","authors":"Byungchan Kim, Hayan Nam, Myungjun Yu","doi":"10.1142/s1793042124500659","DOIUrl":"https://doi.org/10.1142/s1793042124500659","url":null,"abstract":"<p>We introduce the multi-Gaussian polynomial <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>G</mi></mrow><mrow><mi>k</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>M</mi><mo>,</mo><mi>N</mi><mo stretchy=\"false\">)</mo></math></span><span></span>, a multi-partition analogue of the Gaussian polynomial (also known as <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>q</mi></math></span><span></span>-binomial coefficient), as the generating function for certain restricted multi-color partitions. We study basic properties of multi-Gaussian polynomials and non-symmetric properties of <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>G</mi></mrow><mrow><mi>k</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>M</mi><mo>,</mo><mi>N</mi><mo stretchy=\"false\">)</mo></math></span><span></span>. We also derive a Sylvester-type identity and its application.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":"9 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140204254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum to “The discriminant of compositum of algebraic number fields” 对 "代数数域集合的判别式 "的更正
IF 0.7 3区 数学
International Journal of Number Theory Pub Date : 2024-03-20 DOI: 10.1142/s1793042124500489
Sudesh Kaur Khanduja
{"title":"Corrigendum to “The discriminant of compositum of algebraic number fields”","authors":"Sudesh Kaur Khanduja","doi":"10.1142/s1793042124500489","DOIUrl":"https://doi.org/10.1142/s1793042124500489","url":null,"abstract":"<p>We point out that there is an error in the proof of Theorem 1.1 in [The discriminant of compositum of algebraic number fields, <i>Int. J. Number Theory</i><b>15</b> (2019) 353–360]. We also prove that the result of this theorem holds with an additional hypothesis. However, it is an open problem whether the result of the theorem is true in general or not.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":"2016 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140204333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信