International Journal of Number Theory最新文献

筛选
英文 中文
The Barnes–Hurwitz zeta cocycle at s = 0 and Ehrhart quasi-polynomials of triangles s = 0 时的巴恩斯-赫尔维茨zeta 循环和三角形的埃尔哈特准多项式
IF 0.7 3区 数学
International Journal of Number Theory Pub Date : 2024-03-20 DOI: 10.1142/s179304212450057x
Milton Espinoza
{"title":"The Barnes–Hurwitz zeta cocycle at s = 0 and Ehrhart quasi-polynomials of triangles","authors":"Milton Espinoza","doi":"10.1142/s179304212450057x","DOIUrl":"https://doi.org/10.1142/s179304212450057x","url":null,"abstract":"<p>Following a theorem of Hayes, we give a geometric interpretation of the special value at <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>s</mi><mo>=</mo><mn>0</mn></math></span><span></span> of certain <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mn>1</mn></math></span><span></span>-cocycle on <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mstyle><mtext mathvariant=\"normal\">PGL</mtext></mstyle></mrow><mrow><mn>2</mn></mrow></msub><mo stretchy=\"false\">(</mo><mi>ℚ</mi><mo stretchy=\"false\">)</mo></math></span><span></span> previously introduced by the author. This work yields three main results: an explicit formula for our cocycle at <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>s</mi><mo>=</mo><mn>0</mn></math></span><span></span>, a generalization and a new proof of Hayes’ theorem, and an elegant summation formula for the zeroth coefficient of the Ehrhart quasi-polynomial of certain triangles in <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>ℝ</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span><span></span>.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":"149 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140204340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Linear algebra and congruences for MacMahon’s k-rowed plane partitions MacMahon k 行平面分区的线性代数和全等式
IF 0.7 3区 数学
International Journal of Number Theory Pub Date : 2024-03-20 DOI: 10.1142/s1793042124500702
Shi-Chao Chen
{"title":"Linear algebra and congruences for MacMahon’s k-rowed plane partitions","authors":"Shi-Chao Chen","doi":"10.1142/s1793042124500702","DOIUrl":"https://doi.org/10.1142/s1793042124500702","url":null,"abstract":"<p>In this paper, we provide an algorithm to detect linear congruences of <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>p</mi><msub><mrow><mi>l</mi></mrow><mrow><mi>k</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>n</mi><mo stretchy=\"false\">)</mo></math></span><span></span>, the number of MacMahon’s <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>k</mi></math></span><span></span>-rowed plane partitions, and give a quantitative result on the nonexistence of Ramanujan-type congruences of the <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>k</mi></math></span><span></span>-rowed plane partition functions. We also show <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>p</mi><mo stretchy=\"false\">(</mo><mi>n</mi><mo>,</mo><mi>m</mi><mo stretchy=\"false\">)</mo></math></span><span></span> that the number of partitions at most <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>m</mi></math></span><span></span> parts always admits linear congruences.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":"23 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140204255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fast computation of generalized dedekind sums 广义推演和的快速计算
IF 0.7 3区 数学
International Journal of Number Theory Pub Date : 2024-03-20 DOI: 10.1142/s179304212450060x
Preston Tranbarger, Jessica Wang
{"title":"Fast computation of generalized dedekind sums","authors":"Preston Tranbarger, Jessica Wang","doi":"10.1142/s179304212450060x","DOIUrl":"https://doi.org/10.1142/s179304212450060x","url":null,"abstract":"<p>We construct an algorithm that reduces the complexity for computing generalized Dedekind sums from exponential to polynomial time. We do so by using an efficient word rewriting process in group theory.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":"9 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140204260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Manin–Peyre conjecture for certain multiprojective hypersurfaces 某些多射超曲面的马宁-佩雷猜想
IF 0.7 3区 数学
International Journal of Number Theory Pub Date : 2024-03-20 DOI: 10.1142/s1793042124500623
Xiaodong Zhao
{"title":"The Manin–Peyre conjecture for certain multiprojective hypersurfaces","authors":"Xiaodong Zhao","doi":"10.1142/s1793042124500623","DOIUrl":"https://doi.org/10.1142/s1793042124500623","url":null,"abstract":"<p>By the circle method, an asymptotic formula is established for the number of integer points on certain hypersurfaces within multiprojective space. Using Möbius inversion and the modified hyperbola method, we prove the Manin–Peyre conjecture on the asymptotic behavior of the number of rational points of bounded anticanonical height for certain smooth hypersurfaces in the multiprojective space of sufficiently large dimension.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":"17 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140204261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Higher Mertens constants for almost primes II 几乎素数的更高默顿常量 II
IF 0.7 3区 数学
International Journal of Number Theory Pub Date : 2024-03-20 DOI: 10.1142/s179304212450088x
Jonathan Bayless, Paul Kinlaw, Jared Duker Lichtman
{"title":"Higher Mertens constants for almost primes II","authors":"Jonathan Bayless, Paul Kinlaw, Jared Duker Lichtman","doi":"10.1142/s179304212450088x","DOIUrl":"https://doi.org/10.1142/s179304212450088x","url":null,"abstract":"<p>For <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>k</mi><mo>≥</mo><mn>1</mn></math></span><span></span>, let <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi mathvariant=\"cal\">ℛ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo></math></span><span></span> denote the reciprocal sum up to <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>x</mi></math></span><span></span> of numbers with <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>k</mi></math></span><span></span> prime factors, counted with multiplicity. In prior work, the authors obtained estimates for <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi mathvariant=\"cal\">ℛ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo></math></span><span></span>, extending Mertens’ second theorem, as well as a finer-scale estimate for <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi mathvariant=\"cal\">ℛ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo></math></span><span></span> up to <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mo stretchy=\"false\">(</mo><mo>log</mo><mi>x</mi><mo stretchy=\"false\">)</mo></mrow><mrow><mo stretchy=\"false\">−</mo><mi>N</mi></mrow></msup></math></span><span></span> error for any <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mi>N</mi><mo>&gt;</mo><mn>0</mn></math></span><span></span>. In this paper, we establish the limiting behavior of the higher Mertens constants from the <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi mathvariant=\"cal\">ℛ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo></math></span><span></span> estimate. We also extend these results to <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi mathvariant=\"cal\">ℛ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo></math></span><span></span>, and we comment on the general case <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mi>k</mi><mo>≥</mo><mn>4</mn></math></span><span></span>.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":"17 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140204259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Variations on a theorem of Capelli 卡佩利定理的变式
IF 0.7 3区 数学
International Journal of Number Theory Pub Date : 2024-03-20 DOI: 10.1142/s1793042124500465
Pradipto Banerjee
{"title":"Variations on a theorem of Capelli","authors":"Pradipto Banerjee","doi":"10.1142/s1793042124500465","DOIUrl":"https://doi.org/10.1142/s1793042124500465","url":null,"abstract":"&lt;p&gt;Elementary irreducibility criteria are established for &lt;span&gt;&lt;math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; where &lt;span&gt;&lt;math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;mo&gt;∈&lt;/mo&gt;&lt;mi&gt;ℤ&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;[&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;]&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; is irreducible over &lt;span&gt;&lt;math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mi&gt;ℚ&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; and &lt;span&gt;&lt;math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; is a prime. For instance, our main criterion implies that if &lt;span&gt;&lt;math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; is reducible over &lt;span&gt;&lt;math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mi&gt;ℚ&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;, then &lt;span&gt;&lt;math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; divides &lt;span&gt;&lt;math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; modulo &lt;span&gt;&lt;math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;. Among several applications, it is shown that if &lt;span&gt;&lt;math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; has coefficients in &lt;span&gt;&lt;math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mo stretchy=\"false\"&gt;{&lt;/mo&gt;&lt;mo stretchy=\"false\"&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo stretchy=\"false\"&gt;}&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt;, then &lt;span&gt;&lt;math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mi&gt;f&lt;/mi&gt;&lt;mo stretchy=\"false\"&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo stretchy=\"false\"&gt;)&lt;/mo&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; is irreducible over &lt;span&gt;&lt;math altimg=\"eq-00014.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mi&gt;ℚ&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; excluding a couple of obvious exceptions. As another application, it is proved that if &lt;span&gt;&lt;math altimg=\"eq-00015.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;&gt;&lt;/mo&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/math&gt;&lt;/span&gt;&lt;span&gt;&lt;/span&gt; and &lt;span&gt;&lt;math altimg=\"eq-00016.gif\" display=\"inline\" overflow=\"scroll\"&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;a&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;…&lt;/mo&gt;&lt;mo&gt;,&lt;/mo&gt;","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":"21 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140204253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A conjecture of Hegyvári 黑格瓦里的猜想
IF 0.7 3区 数学
International Journal of Number Theory Pub Date : 2024-03-16 DOI: 10.1142/s1793042124500477
Xing-Wang Jiang, Wu-Xia Ma
{"title":"A conjecture of Hegyvári","authors":"Xing-Wang Jiang, Wu-Xia Ma","doi":"10.1142/s1793042124500477","DOIUrl":"https://doi.org/10.1142/s1793042124500477","url":null,"abstract":"<p>For a given sequence <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>A</mi></math></span><span></span> of nonnegative integers, let <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>P</mi><mo stretchy=\"false\">(</mo><mi>A</mi><mo stretchy=\"false\">)</mo></math></span><span></span> be the set of all finite subsequence sums of <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>A</mi></math></span><span></span>. <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>A</mi></math></span><span></span> is called complete if <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>P</mi><mo stretchy=\"false\">(</mo><mi>A</mi><mo stretchy=\"false\">)</mo></math></span><span></span> contains all sufficiently large integers. A real number <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>α</mi><mo>&gt;</mo><mn>0</mn></math></span><span></span> is called as an infinite diadical fraction (briefly i.d.f.) if the digit 1 appears infinitely many times in the binary representation of <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>α</mi></math></span><span></span>. Hegyvári conjectured that <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub></math></span><span></span> is complete if <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mi>α</mi></math></span><span></span> or <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mi>β</mi></math></span><span></span> is i.d.f. and <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mi>α</mi><mo stretchy=\"false\">/</mo><mi>β</mi><mo>≠</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>l</mi></mrow></msup><mspace width=\"0.25em\"></mspace><mo stretchy=\"false\">(</mo><mi>l</mi><mo>∈</mo><mi>ℤ</mi><mo stretchy=\"false\">)</mo></math></span><span></span>, where <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub><mo>=</mo><mo stretchy=\"false\">{</mo><mo stretchy=\"false\">[</mo><mi>α</mi><mo stretchy=\"false\">]</mo><mo>,</mo><mo stretchy=\"false\">[</mo><mi>β</mi><mo stretchy=\"false\">]</mo><mo>,</mo><mo>…</mo><mo>,</mo><mo stretchy=\"false\">[</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup><mi>α</mi><mo stretchy=\"false\">]</mo><mo>,</mo><mo stretchy=\"false\">[</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup><mi>β</mi><mo stretchy=\"false\">]</mo><mo>,</mo><mo>…</mo><mo stretchy=\"false\">}</mo></math></span><span></span> is a sequence of integers. In this paper, we give a partial result of Hegyvári’s conjecture.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":"40 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140204335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Values of certain Dirichlet series and higher derivative formulas of trigonometric functions 某些 Dirichlet 级数的值和三角函数的高导数公式
IF 0.7 3区 数学
International Journal of Number Theory Pub Date : 2024-03-13 DOI: 10.1142/s1793042124500519
Dominic Lanphier, Allen Lin
{"title":"Values of certain Dirichlet series and higher derivative formulas of trigonometric functions","authors":"Dominic Lanphier, Allen Lin","doi":"10.1142/s1793042124500519","DOIUrl":"https://doi.org/10.1142/s1793042124500519","url":null,"abstract":"<p>We determine new values of certain Dirichlet series and related infinite series. These formulas extend results of several authors. To obtain these results we apply recent expansions of higher derivative formulas of trigonometric functions. We also investigate the transcendentality of values of these series and arithmetic relations of the values of certain related infinite series.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":"22 1","pages":""},"PeriodicalIF":0.7,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140204257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On bounded basis with prescribed representation functions 在有界的基础上,用规定的表示函数
3区 数学
International Journal of Number Theory Pub Date : 2023-11-02 DOI: 10.1142/s1793042124500179
Fang-Gang Xue
{"title":"On bounded basis with prescribed representation functions","authors":"Fang-Gang Xue","doi":"10.1142/s1793042124500179","DOIUrl":"https://doi.org/10.1142/s1793042124500179","url":null,"abstract":"Let [Formula: see text] be the set of integers and [Formula: see text] the set of positive integers. For a nonempty set [Formula: see text] of integers and any integers [Formula: see text], [Formula: see text] with [Formula: see text], define [Formula: see text] as the number of solutions of [Formula: see text], where [Formula: see text] and [Formula: see text] for [Formula: see text] A set [Formula: see text] of integers is defined as a basis of order [Formula: see text] for [Formula: see text] if [Formula: see text] for every integer [Formula: see text]. In 2004, Nešetřil and Serra considered the Erdős–Turán conjecture for a class of bounded bases. In this paper, we generalize the above result and obtain that: for any function [Formula: see text], there exists a bounded basis of order [Formula: see text] for [Formula: see text] such that [Formula: see text] for every integer [Formula: see text].","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":"57 10","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135875133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Infinite families of solutions for A3 + B3 = C3 + D3 and A4 + B4 + C4 + D4 + E4 = F4 in the spirit of Ramanujan 以拉马努扬精神为基础的 A3 + B3 = C3 + D3 和 A4 + B4 + C4 + D4 + E4 = F4 的无穷解族
3区 数学
International Journal of Number Theory Pub Date : 2023-11-02 DOI: 10.1142/s1793042124500283
Archit Agarwal, Meghali Garg
{"title":"Infinite families of solutions for A3 + B3 = C3 + D3 and A4 + B4 + C4 + D4 + E4 = F4 in the spirit of Ramanujan","authors":"Archit Agarwal, Meghali Garg","doi":"10.1142/s1793042124500283","DOIUrl":"https://doi.org/10.1142/s1793042124500283","url":null,"abstract":"Ramanujan, in his lost notebook, gave an interesting identity, which generates infinite families of solutions to Euler’s Diophantine equation [Formula: see text]. In this paper, we produce a few infinite families of solutions to the aforementioned Diophantine equation as well as for the Diophantine equation [Formula: see text] in the spirit of Ramanujan.","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":"57 9","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135875134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信