{"title":"Variations on a theorem of Capelli","authors":"Pradipto Banerjee","doi":"10.1142/s1793042124500465","DOIUrl":null,"url":null,"abstract":"<p>Elementary irreducibility criteria are established for <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>f</mi><mo stretchy=\"false\">(</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>p</mi></mrow></msup><mo stretchy=\"false\">)</mo></math></span><span></span> where <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>f</mi><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo><mo>∈</mo><mi>ℤ</mi><mo stretchy=\"false\">[</mo><mi>x</mi><mo stretchy=\"false\">]</mo></math></span><span></span> is irreducible over <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>ℚ</mi></math></span><span></span> and <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>p</mi></math></span><span></span> is a prime. For instance, our main criterion implies that if <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>f</mi><mo stretchy=\"false\">(</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>p</mi></mrow></msup><mo stretchy=\"false\">)</mo></math></span><span></span> is reducible over <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>ℚ</mi></math></span><span></span>, then <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mi>f</mi><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo></math></span><span></span> divides <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mi>f</mi><mo stretchy=\"false\">(</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>p</mi></mrow></msup><mo stretchy=\"false\">)</mo></math></span><span></span> modulo <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span><span></span>. Among several applications, it is shown that if <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mi>f</mi><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo></math></span><span></span> has coefficients in <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">{</mo><mo stretchy=\"false\">−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo stretchy=\"false\">}</mo></math></span><span></span>, then <span><math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"><mi>f</mi><mo stretchy=\"false\">(</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo stretchy=\"false\">)</mo></math></span><span></span> is irreducible over <span><math altimg=\"eq-00014.gif\" display=\"inline\" overflow=\"scroll\"><mi>ℚ</mi></math></span><span></span> excluding a couple of obvious exceptions. As another application, it is proved that if <span><math altimg=\"eq-00015.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi><mo>></mo><mn>4</mn></math></span><span></span> and <span><math altimg=\"eq-00016.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span><span></span> are distinct integers, then for <span><math altimg=\"eq-00017.gif\" display=\"inline\" overflow=\"scroll\"><mi>𝜀</mi><mo>∈</mo><mo stretchy=\"false\">{</mo><mo stretchy=\"false\">−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo stretchy=\"false\">}</mo></math></span><span></span>, the polynomial <span><math altimg=\"eq-00018.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo stretchy=\"false\">−</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">(</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo stretchy=\"false\">−</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo stretchy=\"false\">)</mo><mo>⋯</mo><mo stretchy=\"false\">(</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo stretchy=\"false\">−</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">+</mo><mi>𝜀</mi></math></span><span></span> is irreducible over <span><math altimg=\"eq-00019.gif\" display=\"inline\" overflow=\"scroll\"><mi>ℚ</mi></math></span><span></span> unless <span><math altimg=\"eq-00020.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi></math></span><span></span> is odd and <span><math altimg=\"eq-00021.gif\" display=\"inline\" overflow=\"scroll\"><mi>𝜀</mi><mo>=</mo><mo stretchy=\"false\">−</mo><mn>1</mn></math></span><span></span>. Some emphasis is given to the non-cyclotomic monic polynomials <span><math altimg=\"eq-00022.gif\" display=\"inline\" overflow=\"scroll\"><mi>f</mi><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo></math></span><span></span> with <span><math altimg=\"eq-00023.gif\" display=\"inline\" overflow=\"scroll\"><mi>f</mi><mo stretchy=\"false\">(</mo><mn>0</mn><mo stretchy=\"false\">)</mo><mo>∈</mo><mo stretchy=\"false\">{</mo><mo stretchy=\"false\">−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo stretchy=\"false\">}</mo></math></span><span></span>. In these cases, among other things, it is shown that if <span><math altimg=\"eq-00024.gif\" display=\"inline\" overflow=\"scroll\"><mi>p</mi><mo>≫</mo><mo stretchy=\"false\">(</mo><mo>deg</mo><mi>f</mi><mo stretchy=\"false\">)</mo><mo>log</mo><mo>max</mo><mo stretchy=\"false\">{</mo><mn>2</mn><mo>,</mo><mi>H</mi><mo stretchy=\"false\">(</mo><mi>f</mi><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">}</mo></math></span><span></span>, where <span><math altimg=\"eq-00025.gif\" display=\"inline\" overflow=\"scroll\"><mi>H</mi><mo stretchy=\"false\">(</mo><mi>f</mi><mo stretchy=\"false\">)</mo></math></span><span></span> denotes the height of <span><math altimg=\"eq-00026.gif\" display=\"inline\" overflow=\"scroll\"><mi>f</mi><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo></math></span><span></span>, then <span><math altimg=\"eq-00027.gif\" display=\"inline\" overflow=\"scroll\"><mi>f</mi><mo stretchy=\"false\">(</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>p</mi></mrow></msup><mo stretchy=\"false\">)</mo></math></span><span></span> is irreducible over <span><math altimg=\"eq-00028.gif\" display=\"inline\" overflow=\"scroll\"><mi>ℚ</mi></math></span><span></span>. Proofs of the irreducibility criteria rest upon a general result of Capelli concerning the factorization of <span><math altimg=\"eq-00029.gif\" display=\"inline\" overflow=\"scroll\"><mi>f</mi><mo stretchy=\"false\">(</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>m</mi></mrow></msup><mo stretchy=\"false\">)</mo></math></span><span></span>.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1793042124500465","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Elementary irreducibility criteria are established for where is irreducible over and is a prime. For instance, our main criterion implies that if is reducible over , then divides modulo . Among several applications, it is shown that if has coefficients in , then is irreducible over excluding a couple of obvious exceptions. As another application, it is proved that if and are distinct integers, then for , the polynomial is irreducible over unless is odd and . Some emphasis is given to the non-cyclotomic monic polynomials with . In these cases, among other things, it is shown that if , where denotes the height of , then is irreducible over . Proofs of the irreducibility criteria rest upon a general result of Capelli concerning the factorization of .
期刊介绍:
This journal publishes original research papers and review articles on all areas of Number Theory, including elementary number theory, analytic number theory, algebraic number theory, arithmetic algebraic geometry, geometry of numbers, diophantine equations, diophantine approximation, transcendental number theory, probabilistic number theory, modular forms, multiplicative number theory, additive number theory, partitions, and computational number theory.