卡佩利定理的变式

IF 0.5 3区 数学 Q3 MATHEMATICS
Pradipto Banerjee
{"title":"卡佩利定理的变式","authors":"Pradipto Banerjee","doi":"10.1142/s1793042124500465","DOIUrl":null,"url":null,"abstract":"<p>Elementary irreducibility criteria are established for <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>f</mi><mo stretchy=\"false\">(</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>p</mi></mrow></msup><mo stretchy=\"false\">)</mo></math></span><span></span> where <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>f</mi><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo><mo>∈</mo><mi>ℤ</mi><mo stretchy=\"false\">[</mo><mi>x</mi><mo stretchy=\"false\">]</mo></math></span><span></span> is irreducible over <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>ℚ</mi></math></span><span></span> and <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>p</mi></math></span><span></span> is a prime. For instance, our main criterion implies that if <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>f</mi><mo stretchy=\"false\">(</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>p</mi></mrow></msup><mo stretchy=\"false\">)</mo></math></span><span></span> is reducible over <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>ℚ</mi></math></span><span></span>, then <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mi>f</mi><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo></math></span><span></span> divides <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mi>f</mi><mo stretchy=\"false\">(</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>p</mi></mrow></msup><mo stretchy=\"false\">)</mo></math></span><span></span> modulo <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span><span></span>. Among several applications, it is shown that if <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mi>f</mi><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo></math></span><span></span> has coefficients in <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">{</mo><mo stretchy=\"false\">−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo stretchy=\"false\">}</mo></math></span><span></span>, then <span><math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"><mi>f</mi><mo stretchy=\"false\">(</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo stretchy=\"false\">)</mo></math></span><span></span> is irreducible over <span><math altimg=\"eq-00014.gif\" display=\"inline\" overflow=\"scroll\"><mi>ℚ</mi></math></span><span></span> excluding a couple of obvious exceptions. As another application, it is proved that if <span><math altimg=\"eq-00015.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi><mo>&gt;</mo><mn>4</mn></math></span><span></span> and <span><math altimg=\"eq-00016.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span><span></span> are distinct integers, then for <span><math altimg=\"eq-00017.gif\" display=\"inline\" overflow=\"scroll\"><mi>𝜀</mi><mo>∈</mo><mo stretchy=\"false\">{</mo><mo stretchy=\"false\">−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo stretchy=\"false\">}</mo></math></span><span></span>, the polynomial <span><math altimg=\"eq-00018.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo stretchy=\"false\">−</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">(</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo stretchy=\"false\">−</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo stretchy=\"false\">)</mo><mo>⋯</mo><mo stretchy=\"false\">(</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo stretchy=\"false\">−</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">+</mo><mi>𝜀</mi></math></span><span></span> is irreducible over <span><math altimg=\"eq-00019.gif\" display=\"inline\" overflow=\"scroll\"><mi>ℚ</mi></math></span><span></span> unless <span><math altimg=\"eq-00020.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi></math></span><span></span> is odd and <span><math altimg=\"eq-00021.gif\" display=\"inline\" overflow=\"scroll\"><mi>𝜀</mi><mo>=</mo><mo stretchy=\"false\">−</mo><mn>1</mn></math></span><span></span>. Some emphasis is given to the non-cyclotomic monic polynomials <span><math altimg=\"eq-00022.gif\" display=\"inline\" overflow=\"scroll\"><mi>f</mi><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo></math></span><span></span> with <span><math altimg=\"eq-00023.gif\" display=\"inline\" overflow=\"scroll\"><mi>f</mi><mo stretchy=\"false\">(</mo><mn>0</mn><mo stretchy=\"false\">)</mo><mo>∈</mo><mo stretchy=\"false\">{</mo><mo stretchy=\"false\">−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo stretchy=\"false\">}</mo></math></span><span></span>. In these cases, among other things, it is shown that if <span><math altimg=\"eq-00024.gif\" display=\"inline\" overflow=\"scroll\"><mi>p</mi><mo>≫</mo><mo stretchy=\"false\">(</mo><mo>deg</mo><mi>f</mi><mo stretchy=\"false\">)</mo><mo>log</mo><mo>max</mo><mo stretchy=\"false\">{</mo><mn>2</mn><mo>,</mo><mi>H</mi><mo stretchy=\"false\">(</mo><mi>f</mi><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">}</mo></math></span><span></span>, where <span><math altimg=\"eq-00025.gif\" display=\"inline\" overflow=\"scroll\"><mi>H</mi><mo stretchy=\"false\">(</mo><mi>f</mi><mo stretchy=\"false\">)</mo></math></span><span></span> denotes the height of <span><math altimg=\"eq-00026.gif\" display=\"inline\" overflow=\"scroll\"><mi>f</mi><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo></math></span><span></span>, then <span><math altimg=\"eq-00027.gif\" display=\"inline\" overflow=\"scroll\"><mi>f</mi><mo stretchy=\"false\">(</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>p</mi></mrow></msup><mo stretchy=\"false\">)</mo></math></span><span></span> is irreducible over <span><math altimg=\"eq-00028.gif\" display=\"inline\" overflow=\"scroll\"><mi>ℚ</mi></math></span><span></span>. Proofs of the irreducibility criteria rest upon a general result of Capelli concerning the factorization of <span><math altimg=\"eq-00029.gif\" display=\"inline\" overflow=\"scroll\"><mi>f</mi><mo stretchy=\"false\">(</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>m</mi></mrow></msup><mo stretchy=\"false\">)</mo></math></span><span></span>.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variations on a theorem of Capelli\",\"authors\":\"Pradipto Banerjee\",\"doi\":\"10.1142/s1793042124500465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Elementary irreducibility criteria are established for <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>f</mi><mo stretchy=\\\"false\\\">(</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>p</mi></mrow></msup><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> where <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>f</mi><mo stretchy=\\\"false\\\">(</mo><mi>x</mi><mo stretchy=\\\"false\\\">)</mo><mo>∈</mo><mi>ℤ</mi><mo stretchy=\\\"false\\\">[</mo><mi>x</mi><mo stretchy=\\\"false\\\">]</mo></math></span><span></span> is irreducible over <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>ℚ</mi></math></span><span></span> and <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>p</mi></math></span><span></span> is a prime. For instance, our main criterion implies that if <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>f</mi><mo stretchy=\\\"false\\\">(</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>p</mi></mrow></msup><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> is reducible over <span><math altimg=\\\"eq-00007.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>ℚ</mi></math></span><span></span>, then <span><math altimg=\\\"eq-00008.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>f</mi><mo stretchy=\\\"false\\\">(</mo><mi>x</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> divides <span><math altimg=\\\"eq-00009.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>f</mi><mo stretchy=\\\"false\\\">(</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>p</mi></mrow></msup><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> modulo <span><math altimg=\\\"eq-00010.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span><span></span>. Among several applications, it is shown that if <span><math altimg=\\\"eq-00011.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>f</mi><mo stretchy=\\\"false\\\">(</mo><mi>x</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> has coefficients in <span><math altimg=\\\"eq-00012.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo stretchy=\\\"false\\\">{</mo><mo stretchy=\\\"false\\\">−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo stretchy=\\\"false\\\">}</mo></math></span><span></span>, then <span><math altimg=\\\"eq-00013.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>f</mi><mo stretchy=\\\"false\\\">(</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> is irreducible over <span><math altimg=\\\"eq-00014.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>ℚ</mi></math></span><span></span> excluding a couple of obvious exceptions. As another application, it is proved that if <span><math altimg=\\\"eq-00015.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>n</mi><mo>&gt;</mo><mn>4</mn></math></span><span></span> and <span><math altimg=\\\"eq-00016.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span><span></span> are distinct integers, then for <span><math altimg=\\\"eq-00017.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>𝜀</mi><mo>∈</mo><mo stretchy=\\\"false\\\">{</mo><mo stretchy=\\\"false\\\">−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo stretchy=\\\"false\\\">}</mo></math></span><span></span>, the polynomial <span><math altimg=\\\"eq-00018.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo stretchy=\\\"false\\\">(</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo stretchy=\\\"false\\\">−</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mo stretchy=\\\"false\\\">)</mo><mo stretchy=\\\"false\\\">(</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo stretchy=\\\"false\\\">−</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mo stretchy=\\\"false\\\">)</mo><mo>⋯</mo><mo stretchy=\\\"false\\\">(</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo stretchy=\\\"false\\\">−</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\\\"false\\\">)</mo><mo stretchy=\\\"false\\\">+</mo><mi>𝜀</mi></math></span><span></span> is irreducible over <span><math altimg=\\\"eq-00019.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>ℚ</mi></math></span><span></span> unless <span><math altimg=\\\"eq-00020.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>n</mi></math></span><span></span> is odd and <span><math altimg=\\\"eq-00021.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>𝜀</mi><mo>=</mo><mo stretchy=\\\"false\\\">−</mo><mn>1</mn></math></span><span></span>. Some emphasis is given to the non-cyclotomic monic polynomials <span><math altimg=\\\"eq-00022.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>f</mi><mo stretchy=\\\"false\\\">(</mo><mi>x</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> with <span><math altimg=\\\"eq-00023.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>f</mi><mo stretchy=\\\"false\\\">(</mo><mn>0</mn><mo stretchy=\\\"false\\\">)</mo><mo>∈</mo><mo stretchy=\\\"false\\\">{</mo><mo stretchy=\\\"false\\\">−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo stretchy=\\\"false\\\">}</mo></math></span><span></span>. In these cases, among other things, it is shown that if <span><math altimg=\\\"eq-00024.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>p</mi><mo>≫</mo><mo stretchy=\\\"false\\\">(</mo><mo>deg</mo><mi>f</mi><mo stretchy=\\\"false\\\">)</mo><mo>log</mo><mo>max</mo><mo stretchy=\\\"false\\\">{</mo><mn>2</mn><mo>,</mo><mi>H</mi><mo stretchy=\\\"false\\\">(</mo><mi>f</mi><mo stretchy=\\\"false\\\">)</mo><mo stretchy=\\\"false\\\">}</mo></math></span><span></span>, where <span><math altimg=\\\"eq-00025.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>H</mi><mo stretchy=\\\"false\\\">(</mo><mi>f</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> denotes the height of <span><math altimg=\\\"eq-00026.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>f</mi><mo stretchy=\\\"false\\\">(</mo><mi>x</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>, then <span><math altimg=\\\"eq-00027.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>f</mi><mo stretchy=\\\"false\\\">(</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>p</mi></mrow></msup><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> is irreducible over <span><math altimg=\\\"eq-00028.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>ℚ</mi></math></span><span></span>. Proofs of the irreducibility criteria rest upon a general result of Capelli concerning the factorization of <span><math altimg=\\\"eq-00029.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>f</mi><mo stretchy=\\\"false\\\">(</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>m</mi></mrow></msup><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>.</p>\",\"PeriodicalId\":14293,\"journal\":{\"name\":\"International Journal of Number Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793042124500465\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1793042124500465","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在 f(x)∈ℤ[x] 在ℚ上不可还原且 p 是素数的情况下,为 f(xp) 建立了基本的不可还原性准则。例如,我们的主要准则意味着,如果 f(xp) 在ℚ上是可还原的,那么 f(x) 除以 f(xp) modulo p2。在一些应用中,证明了如果 f(x) 的系数在{-1,1}中,那么 f(x2) 在ℚ上是不可还原的,但有几个明显的例外。另一个应用证明,如果 n>4 和 a1,a2,...,an 是不同的整数,那么对于𝜀∈{-1,1},多项式 (x2-a1)(x2-a2)⋯(x2-an)+𝜀 在ℚ 上是不可约的,除非 n 是奇数且𝜀=-1。本文重点讨论了 f(0)∈{-1,1} 的非循环单项式 f(x)。在这些情况下,除其他外,还证明了如果 p≫(degf)logmax{2,H(f)},其中 H(f) 表示 f(x) 的高,那么 f(xp) 在ℚ上是不可还原的。不可还原性标准的证明依赖于卡佩利关于 f(xm) 因式分解的一般结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Variations on a theorem of Capelli

Elementary irreducibility criteria are established for f(xp) where f(x)[x] is irreducible over and p is a prime. For instance, our main criterion implies that if f(xp) is reducible over , then f(x) divides f(xp) modulo p2. Among several applications, it is shown that if f(x) has coefficients in {1,1}, then f(x2) is irreducible over excluding a couple of obvious exceptions. As another application, it is proved that if n>4 and a1,a2,,an are distinct integers, then for 𝜀{1,1}, the polynomial (x2a1)(x2a2)(x2an)+𝜀 is irreducible over unless n is odd and 𝜀=1. Some emphasis is given to the non-cyclotomic monic polynomials f(x) with f(0){1,1}. In these cases, among other things, it is shown that if p(degf)logmax{2,H(f)}, where H(f) denotes the height of f(x), then f(xp) is irreducible over . Proofs of the irreducibility criteria rest upon a general result of Capelli concerning the factorization of f(xm).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
14.30%
发文量
97
审稿时长
4-8 weeks
期刊介绍: This journal publishes original research papers and review articles on all areas of Number Theory, including elementary number theory, analytic number theory, algebraic number theory, arithmetic algebraic geometry, geometry of numbers, diophantine equations, diophantine approximation, transcendental number theory, probabilistic number theory, modular forms, multiplicative number theory, additive number theory, partitions, and computational number theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信