{"title":"某些多射超曲面的马宁-佩雷猜想","authors":"Xiaodong Zhao","doi":"10.1142/s1793042124500623","DOIUrl":null,"url":null,"abstract":"<p>By the circle method, an asymptotic formula is established for the number of integer points on certain hypersurfaces within multiprojective space. Using Möbius inversion and the modified hyperbola method, we prove the Manin–Peyre conjecture on the asymptotic behavior of the number of rational points of bounded anticanonical height for certain smooth hypersurfaces in the multiprojective space of sufficiently large dimension.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Manin–Peyre conjecture for certain multiprojective hypersurfaces\",\"authors\":\"Xiaodong Zhao\",\"doi\":\"10.1142/s1793042124500623\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>By the circle method, an asymptotic formula is established for the number of integer points on certain hypersurfaces within multiprojective space. Using Möbius inversion and the modified hyperbola method, we prove the Manin–Peyre conjecture on the asymptotic behavior of the number of rational points of bounded anticanonical height for certain smooth hypersurfaces in the multiprojective space of sufficiently large dimension.</p>\",\"PeriodicalId\":14293,\"journal\":{\"name\":\"International Journal of Number Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793042124500623\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1793042124500623","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
The Manin–Peyre conjecture for certain multiprojective hypersurfaces
By the circle method, an asymptotic formula is established for the number of integer points on certain hypersurfaces within multiprojective space. Using Möbius inversion and the modified hyperbola method, we prove the Manin–Peyre conjecture on the asymptotic behavior of the number of rational points of bounded anticanonical height for certain smooth hypersurfaces in the multiprojective space of sufficiently large dimension.
期刊介绍:
This journal publishes original research papers and review articles on all areas of Number Theory, including elementary number theory, analytic number theory, algebraic number theory, arithmetic algebraic geometry, geometry of numbers, diophantine equations, diophantine approximation, transcendental number theory, probabilistic number theory, modular forms, multiplicative number theory, additive number theory, partitions, and computational number theory.