某些多射超曲面的马宁-佩雷猜想

IF 0.5 3区 数学 Q3 MATHEMATICS
Xiaodong Zhao
{"title":"某些多射超曲面的马宁-佩雷猜想","authors":"Xiaodong Zhao","doi":"10.1142/s1793042124500623","DOIUrl":null,"url":null,"abstract":"<p>By the circle method, an asymptotic formula is established for the number of integer points on certain hypersurfaces within multiprojective space. Using Möbius inversion and the modified hyperbola method, we prove the Manin–Peyre conjecture on the asymptotic behavior of the number of rational points of bounded anticanonical height for certain smooth hypersurfaces in the multiprojective space of sufficiently large dimension.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Manin–Peyre conjecture for certain multiprojective hypersurfaces\",\"authors\":\"Xiaodong Zhao\",\"doi\":\"10.1142/s1793042124500623\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>By the circle method, an asymptotic formula is established for the number of integer points on certain hypersurfaces within multiprojective space. Using Möbius inversion and the modified hyperbola method, we prove the Manin–Peyre conjecture on the asymptotic behavior of the number of rational points of bounded anticanonical height for certain smooth hypersurfaces in the multiprojective space of sufficiently large dimension.</p>\",\"PeriodicalId\":14293,\"journal\":{\"name\":\"International Journal of Number Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793042124500623\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1793042124500623","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

通过圆法,建立了多射空间内某些超曲面上整数点数的渐近公式。利用莫比乌斯反演法和修正双曲线法,我们证明了马宁-佩雷猜想,即在足够大维度的多射空间中,某些光滑超曲面上有界反锥高的有理点数的渐近行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Manin–Peyre conjecture for certain multiprojective hypersurfaces

By the circle method, an asymptotic formula is established for the number of integer points on certain hypersurfaces within multiprojective space. Using Möbius inversion and the modified hyperbola method, we prove the Manin–Peyre conjecture on the asymptotic behavior of the number of rational points of bounded anticanonical height for certain smooth hypersurfaces in the multiprojective space of sufficiently large dimension.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
14.30%
发文量
97
审稿时长
4-8 weeks
期刊介绍: This journal publishes original research papers and review articles on all areas of Number Theory, including elementary number theory, analytic number theory, algebraic number theory, arithmetic algebraic geometry, geometry of numbers, diophantine equations, diophantine approximation, transcendental number theory, probabilistic number theory, modular forms, multiplicative number theory, additive number theory, partitions, and computational number theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信