{"title":"Linear algebra and congruences for MacMahon’s k-rowed plane partitions","authors":"Shi-Chao Chen","doi":"10.1142/s1793042124500702","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we provide an algorithm to detect linear congruences of <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>p</mi><msub><mrow><mi>l</mi></mrow><mrow><mi>k</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>n</mi><mo stretchy=\"false\">)</mo></math></span><span></span>, the number of MacMahon’s <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>k</mi></math></span><span></span>-rowed plane partitions, and give a quantitative result on the nonexistence of Ramanujan-type congruences of the <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>k</mi></math></span><span></span>-rowed plane partition functions. We also show <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>p</mi><mo stretchy=\"false\">(</mo><mi>n</mi><mo>,</mo><mi>m</mi><mo stretchy=\"false\">)</mo></math></span><span></span> that the number of partitions at most <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>m</mi></math></span><span></span> parts always admits linear congruences.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1793042124500702","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we provide an algorithm to detect linear congruences of , the number of MacMahon’s -rowed plane partitions, and give a quantitative result on the nonexistence of Ramanujan-type congruences of the -rowed plane partition functions. We also show that the number of partitions at most parts always admits linear congruences.
期刊介绍:
This journal publishes original research papers and review articles on all areas of Number Theory, including elementary number theory, analytic number theory, algebraic number theory, arithmetic algebraic geometry, geometry of numbers, diophantine equations, diophantine approximation, transcendental number theory, probabilistic number theory, modular forms, multiplicative number theory, additive number theory, partitions, and computational number theory.