以拉马努扬精神为基础的 A3 + B3 = C3 + D3 和 A4 + B4 + C4 + D4 + E4 = F4 的无穷解族

IF 0.5 3区 数学 Q3 MATHEMATICS
Archit Agarwal, Meghali Garg
{"title":"以拉马努扬精神为基础的 A3 + B3 = C3 + D3 和 A4 + B4 + C4 + D4 + E4 = F4 的无穷解族","authors":"Archit Agarwal, Meghali Garg","doi":"10.1142/s1793042124500283","DOIUrl":null,"url":null,"abstract":"Ramanujan, in his lost notebook, gave an interesting identity, which generates infinite families of solutions to Euler’s Diophantine equation [Formula: see text]. In this paper, we produce a few infinite families of solutions to the aforementioned Diophantine equation as well as for the Diophantine equation [Formula: see text] in the spirit of Ramanujan.","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Infinite families of solutions for A3 + B3 = C3 + D3 and A4 + B4 + C4 + D4 + E4 = F4 in the spirit of Ramanujan\",\"authors\":\"Archit Agarwal, Meghali Garg\",\"doi\":\"10.1142/s1793042124500283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ramanujan, in his lost notebook, gave an interesting identity, which generates infinite families of solutions to Euler’s Diophantine equation [Formula: see text]. In this paper, we produce a few infinite families of solutions to the aforementioned Diophantine equation as well as for the Diophantine equation [Formula: see text] in the spirit of Ramanujan.\",\"PeriodicalId\":14293,\"journal\":{\"name\":\"International Journal of Number Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Number Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793042124500283\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1793042124500283","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

拉马努金在他丢失的笔记本中给出了一个有趣的恒等式,它可以生成欧拉丢芬图方程的无穷族解[公式:见原文]。在本文中,我们本着拉马努金的精神,对上述丢番图方程和丢番图方程[公式:见文]给出了几个无穷族的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Infinite families of solutions for A3 + B3 = C3 + D3 and A4 + B4 + C4 + D4 + E4 = F4 in the spirit of Ramanujan
Ramanujan, in his lost notebook, gave an interesting identity, which generates infinite families of solutions to Euler’s Diophantine equation [Formula: see text]. In this paper, we produce a few infinite families of solutions to the aforementioned Diophantine equation as well as for the Diophantine equation [Formula: see text] in the spirit of Ramanujan.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
14.30%
发文量
97
审稿时长
4-8 weeks
期刊介绍: This journal publishes original research papers and review articles on all areas of Number Theory, including elementary number theory, analytic number theory, algebraic number theory, arithmetic algebraic geometry, geometry of numbers, diophantine equations, diophantine approximation, transcendental number theory, probabilistic number theory, modular forms, multiplicative number theory, additive number theory, partitions, and computational number theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信