On bounded basis with prescribed representation functions

IF 0.5 3区 数学 Q3 MATHEMATICS
Fang-Gang Xue
{"title":"On bounded basis with prescribed representation functions","authors":"Fang-Gang Xue","doi":"10.1142/s1793042124500179","DOIUrl":null,"url":null,"abstract":"Let [Formula: see text] be the set of integers and [Formula: see text] the set of positive integers. For a nonempty set [Formula: see text] of integers and any integers [Formula: see text], [Formula: see text] with [Formula: see text], define [Formula: see text] as the number of solutions of [Formula: see text], where [Formula: see text] and [Formula: see text] for [Formula: see text] A set [Formula: see text] of integers is defined as a basis of order [Formula: see text] for [Formula: see text] if [Formula: see text] for every integer [Formula: see text]. In 2004, Nešetřil and Serra considered the Erdős–Turán conjecture for a class of bounded bases. In this paper, we generalize the above result and obtain that: for any function [Formula: see text], there exists a bounded basis of order [Formula: see text] for [Formula: see text] such that [Formula: see text] for every integer [Formula: see text].","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1793042124500179","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let [Formula: see text] be the set of integers and [Formula: see text] the set of positive integers. For a nonempty set [Formula: see text] of integers and any integers [Formula: see text], [Formula: see text] with [Formula: see text], define [Formula: see text] as the number of solutions of [Formula: see text], where [Formula: see text] and [Formula: see text] for [Formula: see text] A set [Formula: see text] of integers is defined as a basis of order [Formula: see text] for [Formula: see text] if [Formula: see text] for every integer [Formula: see text]. In 2004, Nešetřil and Serra considered the Erdős–Turán conjecture for a class of bounded bases. In this paper, we generalize the above result and obtain that: for any function [Formula: see text], there exists a bounded basis of order [Formula: see text] for [Formula: see text] such that [Formula: see text] for every integer [Formula: see text].
在有界的基础上,用规定的表示函数
设[公式:见文]为整数集,[公式:见文]为正整数集。对于整数和任何整数的非空集合[公式:见文],[公式:见文]与[公式:见文],定义[公式:见文]作为[公式:见文]的解的个数,其中[公式:见文]和[公式:见文]对于[公式:见文],整数集合[公式:见文]被定义为有序的基础[公式:见文]如果[公式:见文]对于每个整数[公式:见文]。2004年,Nešetřil和Serra考虑了一类有界基的Erdős-Turán猜想。本文推广了上述结果,得到:对于任意函数[公式:见文],对于[公式:见文]存在一个阶[公式:见文]的有界基,使得[公式:见文]对于每一个整数[公式:见文]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
14.30%
发文量
97
审稿时长
4-8 weeks
期刊介绍: This journal publishes original research papers and review articles on all areas of Number Theory, including elementary number theory, analytic number theory, algebraic number theory, arithmetic algebraic geometry, geometry of numbers, diophantine equations, diophantine approximation, transcendental number theory, probabilistic number theory, modular forms, multiplicative number theory, additive number theory, partitions, and computational number theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信