s = 0 时的巴恩斯-赫尔维茨zeta 循环和三角形的埃尔哈特准多项式

IF 0.5 3区 数学 Q3 MATHEMATICS
Milton Espinoza
{"title":"s = 0 时的巴恩斯-赫尔维茨zeta 循环和三角形的埃尔哈特准多项式","authors":"Milton Espinoza","doi":"10.1142/s179304212450057x","DOIUrl":null,"url":null,"abstract":"<p>Following a theorem of Hayes, we give a geometric interpretation of the special value at <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>s</mi><mo>=</mo><mn>0</mn></math></span><span></span> of certain <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mn>1</mn></math></span><span></span>-cocycle on <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mstyle><mtext mathvariant=\"normal\">PGL</mtext></mstyle></mrow><mrow><mn>2</mn></mrow></msub><mo stretchy=\"false\">(</mo><mi>ℚ</mi><mo stretchy=\"false\">)</mo></math></span><span></span> previously introduced by the author. This work yields three main results: an explicit formula for our cocycle at <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>s</mi><mo>=</mo><mn>0</mn></math></span><span></span>, a generalization and a new proof of Hayes’ theorem, and an elegant summation formula for the zeroth coefficient of the Ehrhart quasi-polynomial of certain triangles in <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>ℝ</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span><span></span>.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Barnes–Hurwitz zeta cocycle at s = 0 and Ehrhart quasi-polynomials of triangles\",\"authors\":\"Milton Espinoza\",\"doi\":\"10.1142/s179304212450057x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Following a theorem of Hayes, we give a geometric interpretation of the special value at <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>s</mi><mo>=</mo><mn>0</mn></math></span><span></span> of certain <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mn>1</mn></math></span><span></span>-cocycle on <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mstyle><mtext mathvariant=\\\"normal\\\">PGL</mtext></mstyle></mrow><mrow><mn>2</mn></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>ℚ</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> previously introduced by the author. This work yields three main results: an explicit formula for our cocycle at <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>s</mi><mo>=</mo><mn>0</mn></math></span><span></span>, a generalization and a new proof of Hayes’ theorem, and an elegant summation formula for the zeroth coefficient of the Ehrhart quasi-polynomial of certain triangles in <span><math altimg=\\\"eq-00007.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>ℝ</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span><span></span>.</p>\",\"PeriodicalId\":14293,\"journal\":{\"name\":\"International Journal of Number Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s179304212450057x\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s179304212450057x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

根据海耶斯的一个定理,我们给出了作者之前介绍的 PGL2(ℚ)上某些 1 循环在 s=0 时的特殊值的几何解释。这项工作产生了三个主要结果:我们的 s=0 处的循环的明确公式,海耶斯定理的概括和新证明,以及ℝ2 中某些三角形的埃尔哈特准多项式的第零系数的优雅求和公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Barnes–Hurwitz zeta cocycle at s = 0 and Ehrhart quasi-polynomials of triangles

Following a theorem of Hayes, we give a geometric interpretation of the special value at s=0 of certain 1-cocycle on PGL2() previously introduced by the author. This work yields three main results: an explicit formula for our cocycle at s=0, a generalization and a new proof of Hayes’ theorem, and an elegant summation formula for the zeroth coefficient of the Ehrhart quasi-polynomial of certain triangles in 2.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
14.30%
发文量
97
审稿时长
4-8 weeks
期刊介绍: This journal publishes original research papers and review articles on all areas of Number Theory, including elementary number theory, analytic number theory, algebraic number theory, arithmetic algebraic geometry, geometry of numbers, diophantine equations, diophantine approximation, transcendental number theory, probabilistic number theory, modular forms, multiplicative number theory, additive number theory, partitions, and computational number theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信