{"title":"s = 0 时的巴恩斯-赫尔维茨zeta 循环和三角形的埃尔哈特准多项式","authors":"Milton Espinoza","doi":"10.1142/s179304212450057x","DOIUrl":null,"url":null,"abstract":"<p>Following a theorem of Hayes, we give a geometric interpretation of the special value at <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>s</mi><mo>=</mo><mn>0</mn></math></span><span></span> of certain <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mn>1</mn></math></span><span></span>-cocycle on <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mstyle><mtext mathvariant=\"normal\">PGL</mtext></mstyle></mrow><mrow><mn>2</mn></mrow></msub><mo stretchy=\"false\">(</mo><mi>ℚ</mi><mo stretchy=\"false\">)</mo></math></span><span></span> previously introduced by the author. This work yields three main results: an explicit formula for our cocycle at <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>s</mi><mo>=</mo><mn>0</mn></math></span><span></span>, a generalization and a new proof of Hayes’ theorem, and an elegant summation formula for the zeroth coefficient of the Ehrhart quasi-polynomial of certain triangles in <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>ℝ</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span><span></span>.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Barnes–Hurwitz zeta cocycle at s = 0 and Ehrhart quasi-polynomials of triangles\",\"authors\":\"Milton Espinoza\",\"doi\":\"10.1142/s179304212450057x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Following a theorem of Hayes, we give a geometric interpretation of the special value at <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>s</mi><mo>=</mo><mn>0</mn></math></span><span></span> of certain <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mn>1</mn></math></span><span></span>-cocycle on <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mstyle><mtext mathvariant=\\\"normal\\\">PGL</mtext></mstyle></mrow><mrow><mn>2</mn></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>ℚ</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> previously introduced by the author. This work yields three main results: an explicit formula for our cocycle at <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>s</mi><mo>=</mo><mn>0</mn></math></span><span></span>, a generalization and a new proof of Hayes’ theorem, and an elegant summation formula for the zeroth coefficient of the Ehrhart quasi-polynomial of certain triangles in <span><math altimg=\\\"eq-00007.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>ℝ</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span><span></span>.</p>\",\"PeriodicalId\":14293,\"journal\":{\"name\":\"International Journal of Number Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Number Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s179304212450057x\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s179304212450057x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
The Barnes–Hurwitz zeta cocycle at s = 0 and Ehrhart quasi-polynomials of triangles
Following a theorem of Hayes, we give a geometric interpretation of the special value at of certain -cocycle on previously introduced by the author. This work yields three main results: an explicit formula for our cocycle at , a generalization and a new proof of Hayes’ theorem, and an elegant summation formula for the zeroth coefficient of the Ehrhart quasi-polynomial of certain triangles in .
期刊介绍:
This journal publishes original research papers and review articles on all areas of Number Theory, including elementary number theory, analytic number theory, algebraic number theory, arithmetic algebraic geometry, geometry of numbers, diophantine equations, diophantine approximation, transcendental number theory, probabilistic number theory, modular forms, multiplicative number theory, additive number theory, partitions, and computational number theory.