Higher Mertens constants for almost primes II

IF 0.5 3区 数学 Q3 MATHEMATICS
Jonathan Bayless, Paul Kinlaw, Jared Duker Lichtman
{"title":"Higher Mertens constants for almost primes II","authors":"Jonathan Bayless, Paul Kinlaw, Jared Duker Lichtman","doi":"10.1142/s179304212450088x","DOIUrl":null,"url":null,"abstract":"<p>For <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>k</mi><mo>≥</mo><mn>1</mn></math></span><span></span>, let <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi mathvariant=\"cal\">ℛ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo></math></span><span></span> denote the reciprocal sum up to <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>x</mi></math></span><span></span> of numbers with <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>k</mi></math></span><span></span> prime factors, counted with multiplicity. In prior work, the authors obtained estimates for <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi mathvariant=\"cal\">ℛ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo></math></span><span></span>, extending Mertens’ second theorem, as well as a finer-scale estimate for <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi mathvariant=\"cal\">ℛ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo></math></span><span></span> up to <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mo stretchy=\"false\">(</mo><mo>log</mo><mi>x</mi><mo stretchy=\"false\">)</mo></mrow><mrow><mo stretchy=\"false\">−</mo><mi>N</mi></mrow></msup></math></span><span></span> error for any <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mi>N</mi><mo>&gt;</mo><mn>0</mn></math></span><span></span>. In this paper, we establish the limiting behavior of the higher Mertens constants from the <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi mathvariant=\"cal\">ℛ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo></math></span><span></span> estimate. We also extend these results to <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi mathvariant=\"cal\">ℛ</mi></mrow><mrow><mn>3</mn></mrow></msub><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo></math></span><span></span>, and we comment on the general case <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mi>k</mi><mo>≥</mo><mn>4</mn></math></span><span></span>.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s179304212450088x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For k1, let k(x) denote the reciprocal sum up to x of numbers with k prime factors, counted with multiplicity. In prior work, the authors obtained estimates for k(x), extending Mertens’ second theorem, as well as a finer-scale estimate for 2(x) up to (logx)N error for any N>0. In this paper, we establish the limiting behavior of the higher Mertens constants from the 2(x) estimate. We also extend these results to 3(x), and we comment on the general case k4.

几乎素数的更高默顿常量 II
对于 k≥1,让ℛk(x)表示具有 k 个质因数的数到 x 的倒数和,以倍数计数。在之前的工作中,作者扩展了梅尔腾斯第二定理,得到了ℛk(x)的估计值,并对任意 N>0 的ℛ2(x)进行了更精细的估计,误差可达 (logx)-N。在本文中,我们从ℛ2(x) 估计中建立了较高默顿常量的极限行为。我们还将这些结果扩展到ℛ3(x),并对 k≥4 的一般情况进行了评论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
14.30%
发文量
97
审稿时长
4-8 weeks
期刊介绍: This journal publishes original research papers and review articles on all areas of Number Theory, including elementary number theory, analytic number theory, algebraic number theory, arithmetic algebraic geometry, geometry of numbers, diophantine equations, diophantine approximation, transcendental number theory, probabilistic number theory, modular forms, multiplicative number theory, additive number theory, partitions, and computational number theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信