A conjecture of Hegyvári

IF 0.5 3区 数学 Q3 MATHEMATICS
Xing-Wang Jiang, Wu-Xia Ma
{"title":"A conjecture of Hegyvári","authors":"Xing-Wang Jiang, Wu-Xia Ma","doi":"10.1142/s1793042124500477","DOIUrl":null,"url":null,"abstract":"<p>For a given sequence <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>A</mi></math></span><span></span> of nonnegative integers, let <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>P</mi><mo stretchy=\"false\">(</mo><mi>A</mi><mo stretchy=\"false\">)</mo></math></span><span></span> be the set of all finite subsequence sums of <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>A</mi></math></span><span></span>. <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>A</mi></math></span><span></span> is called complete if <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>P</mi><mo stretchy=\"false\">(</mo><mi>A</mi><mo stretchy=\"false\">)</mo></math></span><span></span> contains all sufficiently large integers. A real number <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>α</mi><mo>&gt;</mo><mn>0</mn></math></span><span></span> is called as an infinite diadical fraction (briefly i.d.f.) if the digit 1 appears infinitely many times in the binary representation of <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>α</mi></math></span><span></span>. Hegyvári conjectured that <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub></math></span><span></span> is complete if <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mi>α</mi></math></span><span></span> or <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mi>β</mi></math></span><span></span> is i.d.f. and <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mi>α</mi><mo stretchy=\"false\">/</mo><mi>β</mi><mo>≠</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>l</mi></mrow></msup><mspace width=\"0.25em\"></mspace><mo stretchy=\"false\">(</mo><mi>l</mi><mo>∈</mo><mi>ℤ</mi><mo stretchy=\"false\">)</mo></math></span><span></span>, where <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi><mo>,</mo><mi>β</mi></mrow></msub><mo>=</mo><mo stretchy=\"false\">{</mo><mo stretchy=\"false\">[</mo><mi>α</mi><mo stretchy=\"false\">]</mo><mo>,</mo><mo stretchy=\"false\">[</mo><mi>β</mi><mo stretchy=\"false\">]</mo><mo>,</mo><mo>…</mo><mo>,</mo><mo stretchy=\"false\">[</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup><mi>α</mi><mo stretchy=\"false\">]</mo><mo>,</mo><mo stretchy=\"false\">[</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup><mi>β</mi><mo stretchy=\"false\">]</mo><mo>,</mo><mo>…</mo><mo stretchy=\"false\">}</mo></math></span><span></span> is a sequence of integers. In this paper, we give a partial result of Hegyvári’s conjecture.</p>","PeriodicalId":14293,"journal":{"name":"International Journal of Number Theory","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1793042124500477","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For a given sequence A of nonnegative integers, let P(A) be the set of all finite subsequence sums of A. A is called complete if P(A) contains all sufficiently large integers. A real number α>0 is called as an infinite diadical fraction (briefly i.d.f.) if the digit 1 appears infinitely many times in the binary representation of α. Hegyvári conjectured that Aα,β is complete if α or β is i.d.f. and α/β2l(l), where Aα,β={[α],[β],,[2nα],[2nβ],} is a sequence of integers. In this paper, we give a partial result of Hegyvári’s conjecture.

黑格瓦里的猜想
对于给定的非负整数序列 A,让 P(A) 是 A 的所有有限子序列和的集合。如果 P(A) 包含所有足够大的整数,则称 A 为完全序列。如果数字 1 在 α 的二进制表示中出现无限多次,则实数 α>0 被称为无限二分数(简称 i.d.f.)。Hegyvári 猜想,如果 α 或 β 是 i.d.f.,且 α/β≠2l(l∈ℤ) ,则 Aα,β 是完全的,其中 Aα,β={[α],[β],...,[2nα],[2nβ],... } 是一个整数序列。本文给出了 Hegyvári 猜想的部分结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
14.30%
发文量
97
审稿时长
4-8 weeks
期刊介绍: This journal publishes original research papers and review articles on all areas of Number Theory, including elementary number theory, analytic number theory, algebraic number theory, arithmetic algebraic geometry, geometry of numbers, diophantine equations, diophantine approximation, transcendental number theory, probabilistic number theory, modular forms, multiplicative number theory, additive number theory, partitions, and computational number theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信